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What makes artificial intelligence (AI) smart is machine 
learning (ML), which is defined as “a field of study that gives 
computers the ability to learn without being explicitly pro
grammed” by ML pioneer Arthur Samuel in 1959. ML dedu
ces data patterns without relying on prior assumptions as 
statistics does, greatly reducing the human effort required to 
comprehend the data. ML comprises a large family of algo
rithms, many of which support big data analytics [1]. With 
the rapid advances in multi-omics technologies, plant breed
ing has entered the “genome, germplasm, genes, genomic 
breeding, and gene editing (5G)” generation [2], in which bi
ological knowledge and omics data are integrated to expedite 
trait improvement. ML holds great promise for 5G breeding, 
with many reports of ML applications for omics-driven gene 
discovery, genotype-to-phenotype (G2P) prediction, genomic 
selection (GS), and plant phenomics. However, there remains 
a gap between basic research and breeding practices in plants 
[3]. Given that multi-omics, genotypic, phenomic, and envi
ronmental datasets have become highly dimensional and het
erogeneous, novel ML algorithms are expected. Hereby, we 
propose ways to overcome major challenges in the applica
tion of cutting-edge ML models to plant research, with the ul
timate goal of making plant breeding smart and easy.

Population-scale multi-omics analysis for 
gene discovery
Discovery of agronomically useful genes is the premise for 
exploiting natural variations for marker-assisted selection 
(MAS) or creating artificial mutations via genome editing. 
Genome-wide association studies (GWAS) of common agro
nomic traits have reached a bottleneck, as their power to dis
sect complex, polygenic traits is quite limited. Multi-omics 
analysis focusing on a reference germplasm panel under dif
ferent spatiotemporal conditions could greatly enhance the 
mapping resolution of causal genes and mutations when cel
lular biomolecules (e.g., RNA transcripts, proteins, metabo
lites) are treated as molecular traits (mTraits). Additionally, 
phenomics has become another main component in multi- 
omics, in which phenomic data are mostly generated by high- 
throughput imaging equipment using computer vision 
technologies. Since phenomic features may reflect certain 
physiological activities inside plant cells, this type of feature 
can be regarded as imaging traits (iTraits).

Coping with the “curse of dimensionality”
Population-scale multi-omics datasets tend to be highly 
dimensional, noisy, and heterogeneous. This issue is 
addressed using a type of unsupervised learning known as di
mensionality reduction (DR) to prevent the “curse of 
dimensionality”. The Multi-Omics Data Association Studies 
(MODAS) toolbox applies multiple DR algorithms to geno
types and mTraits in plants [4]. To perform DR on geno
types, MODAS combines the Jaccard similarity coefficient, 
density-based spatial clustering of applications with noise 
(DBSCAN), and principal component analysis (PCA) 
algorithms to generate a “pseudo-genotype index” file. This 
highly simplified variation atlas uses tens of thousands of 
genomic blocks to represent millions of single-nucleotide 
polymorphisms (SNPs) in the genome, improving analytical 
efficiency for mapping mTraits.

The dimensionality of mTraits must also be reduced, as 
omics data are highly redundant due to technical issues and 
the characteristics of biological pathways. For example, a me
tabolite is produced by a cascade of enzymatic reactions in
volving many genes and pathways, and crosstalk between 
pathways is common. Therefore, given their highly correlated 
pattern, both final products and intermediate compounds 
could be repeatedly mapped to the same region. The non-neg
ative matrix factorization (NMF) algorithm removes redun
dancy by decomposing the matrix of metabolites(n) × 
samples(m) into one meta-metabolite dimension and one 
meta-sample dimension. The weights of a meta-metabolite 
across samples represent the overall abundance of a set of 
clustered compounds, and the weights of meta-samples reflect 
subgroups of samples divided based on the haplotypes of the 
mapped region. The genomic blocks that contribute to the 
corresponding biosynthetic pathway are mapped via GWAS 
between the meta-metabolites and the pseudo-genotype in
dex. SNPs within the block are then used to identify causal 
genes and mutations. This strategy greatly reduces computing 
time and saves resources while providing clean, easy-to- 
interpret results.

Automated feature engineering
Another common issue is that feature sets, such as SNPs, 
mTraits, or iTraits, are far larger than sample sets. This 
increases the risk of overfitting, as the model may learn incor
rect features from the data. Thus, feature engineering, 
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including feature selection or feature extraction, must be per
formed before training a model. Feature selection tends to se
lect a small subset from the total features without changing 
the original feature values. This can be achieved by manual 
selection based on prior knowledge or automated selection 
by learning the importance of features when training a model. 
By contrast, feature extraction creates a small set of new 
features by summarizing the characteristics of the original 
features. NMF is a form of feature extraction, as meta- 
metabolites are new features derived from a much larger set 
of metabolites. Feature engineering can be embedded in many 
ML paradigms, such as deep learning (DL) and ensemble 
learning (EL). The DL convolutional neural network 
algorithm performs feature extraction when transferring 
information between network layers. Light Gradient 
Boosting Machine (LightGBM) performs feature selection by 
computing a score of information gain (IG) to select features 
of high importance.

Although automated hyperparameter tuning using grid 
searches is widely implemented in plants, automated feature 
engineering has largely been neglected. In a recent study, SNP 
features with high IG scores selected by LightGBM were con
sistent with the peak SNPs identified from GWAS, indicating 
the ability of the algorithm to recognize trait-associated var
iations [5]. It suggests that automated feature selection can 
also be used to discover agronomically important genes and 
to facilitate panel design of compiling effective molecular 
markers associated with traits of interest for MAS. In addi
tion to methods embedded in ML algorithms, many indepen
dent tools specifically designed for feature engineering could 
also be utilized in plants, such as the deep feature synthesis 
method in the Python “Featuretools” library.

Manifold learning for data visualization
Manifold learning uses non-linear DR algorithms to visualize 
datasets with ultrahigh dimensionality, which helps maintain 
the geometric properties of high-dimensional data, even 
when mapped to a low-dimensional space. This technique is 
especially useful for visualizing single-cell RNA sequencing 
(scRNA-seq) data. Multiple algorithms have been utilized to 
investigate the structures of heterogeneous cell populations 
based on scRNA-seq data, including t-distributed stochastic 
neighbor embedding (t-SNE), Uniform Manifold 
Approximation and Projection (UMAP), and Potential of 
Heat-diffusion for Affinity-based Trajectory Embedding 
(PHATE). Another strategy utilizes deep neural networks 
(DNNs) to extract information from internal nodes at differ
ent network layers to simultaneously achieve batch correc
tion, clustering, denoising, and data visualization under a 
unified model. DL using this strategy is no longer regarded as 
a “black box”, as the geometric properties may reflect the bi
ological features extracted by the hidden layers of DNNs. 
Sparse Autoencoder for Unsupervised Clustering, 
Imputation, and Embedding (SAUCIE) performs DR and vi
sualization of scRNA-seq data simultaneously. Other omics 
data types have also been generated at single-cell resolution. 
Aligning and integrating multiple levels of omics data for the 
same cell populations has become a new challenge.

Fine-mapping of causative variants
In essence, gene discovery is to identify allelic genomic varia
tions that are beneficial to a designated trait. Thus, fine- 
mapping of causative variants, including SNPs, insertions 

and deletions (InDels), presence and absence variations 
(PAVs), and a variety of structural variations (SVs) causing 
direct functional change, is important for precision-designed 
breeding. This is especially true for improving qualitative 
traits determined by single gene with major effect. However, 
causative variations involving coding SNPs or short InDels 
that alternate protein functions only account for a very small 
fraction of trait-related variations. Mapping of regulatory 
variants attributable to SVs and PAVs is much difficult, as it 
requires high-quality pan-genome sequences derived from de 
novo assembly of representative core germplasm lines. To 
achieve this goal, multiple steps assisted by different types of 
omics data are required. It first starts with rough-mapping of 
a genomic interval, usually ranging in megabases, by GWAS 
analysis of the target trait; then, integrative analysis of vari
ous datasets generated from transcriptome-wide association 
study (TWAS), metabolome-wide association study 
(MWAS), and other type of techniques profiling cis-regula
tory elements by chromatin immunoprecipitation sequencing 
(ChIP-seq) or self-transcribing active regulatory region se
quencing (STARR-seq) has to be done to further narrow 
down the list of candidate genes or genomic regions; third, 
genotypes of SNPs in the candidate genes and regions are 
mapped to pan-genome assembly to determine the haplotypic 
map (HapMap) associated with each of the SVs or PAVs; at 
last, statistical testing is performed to examine whether the 
PAV-associated HapMap is significantly consistent with phe
notypic variations. However, it’s worthy of noting that these 
so-called causative variants identified from multi-omics 
analysis are only candidate genes or variations. Whether they 
are directly involved in functional variations contributing to 
trait change still requires strict experimental validation, be
fore this functional marker can be finally utilized in molecu
lar design breeding. Because fine-mapping of causative 
variants involves multiple forms of population-scale omics 
data which are recently defined as panomics by Weckwerth 
et al., development of ML methods solving integrative analy
sis of panomics has been highly expected [6].

Knowledge-driven molecular design breeding
Knowledge from plant research should ultimately facilitate 
applied plant breeding. With an explicit understanding of the 
biological mechanisms underlying a trait, the causal gene can 
be precisely utilized for trait improvement. Yet, translating 
biological knowledge into breeding remains challenging. For 
example, germplasm panels used for GWAS usually consist 
of wild relatives, landraces, obsolete cultivars, and modern 
cultivars to ensure genotypic and phenotypic diversity. 
However, most mutations mapped in germplasm are no lon
ger present in modern cultivars, as deleterious alleles have 
been removed and beneficial alleles fixed by artificial selec
tion. Hence, relatively few genes are utilized in modern breed
ing, and mutations in these genes conveying desirable traits 
usually vary from population to population. A foreground 
mutation only functions properly under a specific genetic 
background; thus, even if a mutation discovered from germ
plasm is potentially valuable, it may not be directly utilizable 
in modern breeding systems. Similarly, when creating artifi
cial mutations, the new mutation must adapt to the existing 
gene regulatory networks. Therefore, the bottleneck is not 
the genome editing or transgenic techniques but rather the 
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need to identify genes and recipient materials that can be 
modified without affecting non-target traits.

Breeding is all about “timing” and “balancing”
Trait improvement is essentially a process of fine-tuning a 
gene regulation network. Crossing generates new patterns of 
gene regulation by recombining deleterious and beneficial 
alleles. This process offers the chance to select the optimal 
network where genes involved in a regulatory pathway meet 
the breeding goal of trait improvement. Thus, even a small 
phenotypic change might involve a reshaped gene regulatory 
network influencing complex interactions among genes and 
pathways. It is also important to clarify the definition of dele
terious and beneficial alleles. That is, no allele is absolutely 
deleterious or beneficial: alleles are defined based on their fi
nal effects on yield. However, deleterious and beneficial sta
tuses are potentially interconvertible depending on the 
developmental stage and/or environment. For example, a 
beneficial allele for vegetative growth is beneficial for bio
mass accumulation but may be deleterious to yield-related 
traits by negatively affecting reproductive development [7]. 
Thus, breeding cannot be simply understood as a way of 
removing deleterious alleles or pyramiding beneficial alleles; 
instead, the effects of two sets of counteracting alleles must 
be balanced.

How can our knowledge of genes and mechanisms be effi
ciently translated into applied breeding? ML is suited for this 
mission due to its capacity to integrate knowledge and data. 
To illustrate this, consider ML-facilitated molecular design to 
breed maize cultivars suitable for mechanical harvesting. This 
requires considering multiple traits for improvement, includ
ing plant compactness, kernel dehydration rate, times of 
flowering and maturity, stalk stiffness and strength, and corn 
husk morphology. The greatest difficulty is dealing with the 
pleiotropic effects of genes: changing one trait may affect 
other traits. Target-oriented prioritization (TOP), a recently 
developed integrative multi-trait ML algorithm, mathemati
cally learns the synergistic or competitive relationships 
among multiple traits to make a cohesive decision for select
ing superior candidates [8]. As long as sufficient genotypic 
and phenotypic data are acquired, ML models can establish 
the correlations between genes and traits based on knowledge 
graph. The target genes for a designated breeding population 
can be assembled as a panel for ML algorithms to learn the 
optimal pattern of allelic combinations. The model then aids 
the selection of materials with the desired haplotypes to si
multaneously improve multiple traits.

Panel design with EL
Genotyping by targeted sequencing (GBTS), which captures 
SNP-containing regions for gene panel sequencing, is widely 
used for genetic diagnostics in precision medicine. A typical 
GBTS panel contains thousands to tens of thousands of SNPs 
covering dozens to hundreds of genes, allowing hundreds of 
samples to be multiplexed for genotyping. However, the cost 
per sample of genotyping is still relatively high for plant 
breeding because of the need to process tens of thousands of 
samples. Nonetheless, GBTS is a good method for accumulat
ing training data for ML until the population is large enough 
to cover all possible allelic combinations of target genes. As 
long as the most stable SNPs are identified, a new low-cost 
panel containing dozens of SNPs could be designed.

Ultrahigh-throughput, scalable platforms based on kompe
titive allele-specific PCR (KASP), such as Nexar Array Tape 
systems, could then be utilized. These platforms can multi
plex tens of thousands of samples per run, but the markers 
must be highly universal and effective. One can then take ad
vantage of feature selection embedded in EL to select 
markers. EL is a family of ML algorithms, including random 
forest, gradient boosting decision tree (GBDT), extreme gra
dient boosting (XGBoost), categorical boosting (CatBoost), 
and light gradient boosting machine (LightGBM), which as
semble outcomes from multiple weak learners to enhance 
predictability. LightGBM generates leaf-wise trees and identi
fies the “best leaves”, which in this case are SNPs with high 
utility for classify traits. This ability is represented by an IG 
score, which resembles the effect of the SNP inferred from 
GWAS [5]. Therefore, LightGBM is an ideal tool for compil
ing highly condensed panels of SNPs via automated feature 
selection while maintaining maximum predictability.

Pathway design via causal learning
While a marker panel covers SNPs associated with relevant 
traits identified from GWAS analysis, a pathway panel may 
contain variations associated with genes forming a regulatory 
network or located in a metabolic biosynthesis pathway iden
tified from multi-omics analysis. Therefore, designing a path
way panel requires the inference of the “cause” and “effect” 
relationship between two genes, such as a transcription factor 
and a target gene. Compared to the marker panel that is usu
ally used for improving regular agronomic traits covering 
thousands of SNP markers, a pathway panel may contain 
much less markers associated with genes for improving spe
cific characteristics of plants, such as anti-stress feature or en
hancing the content of certain metabolite compounds. The 
inferred causality can be used as a rule to design a trait panel 
by clustering functionally related genes. Mendelian randomi
zation (MR) was recently used to infer the causal relation
ships between mutations, genes, biomolecules, and traits in 
plants based on summarized results from population-scale 
multi-omics analysis [4]. However, the assumption underly
ing MR is based on human population genetics. Whether this 
tool is applicable to all plant species requires validation, as 
domesticated plants result from artificial selection rather 
than natural selection. It is therefore necessary to seek novel 
methods independent of genetic assumptions. In fact, ML 
and causal inference are two independent fields with different 
methodological systems: ML predicts outcomes based on 
data correlations without explaining causality, whereas 
causal inference determines the roles of the “cause” and 
“effect” of variables. Data scientists are trying to combine 
these two systems. The new field of “causal learning” confers 
the ability of ML models to explain underlying reasons, 
thereby making AI more closely resemble real-world deci
sion-making. For example, causal representation learning 
was designed to discover high-level causal variables based on 
low-level observations. Causal tree learning, a modified ver
sion of the classification and regression tree (CART) model, 
estimates causal relationships during the process of tree split
ting. These methods could be used to reconstruct biological 
networks from multi-omics data, in which the inferred cau
salities represent the directional edges among nodes.
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Data-driven genomic design breeding
Data acquired from industrial breeding programs can include 
genotypic, phenotypic, environmental, climate, and any type 
of field data. Unlike knowledge-driven design, data-driven 
design does not require knowledge of the specific genes and 
mechanisms underlying a trait. Instead, it uses statistical or 
ML models to infer correlations among data, as exemplified 
by GS [9]. However, genotyping cost is still the main factor 
hindering the wide application of GS in plant breeding indus
try. A promising substitution of GBTS is low-coverage 
genome-wide sequencing (lcGWS) or ultra-low-coverage 
genome-wide sequencing (ulcGWS) which randomly sequen
ces genomic DNA at an expected coverage of 1.5× or 0.5×, 
respectively. Genotyping cost by lcGWS is much lower than 
GBTS, since it skips the step of capturing targeted DNA frag
ments. Nevertheless, because DNA fragments are randomly 
sequenced by lcGWS, SNPs may not be consistently covered 
by all the genotyped samples. One possible solution is to first 
construct a reference HapMap composed of all elite inbred 
lines, which includes usually 50 to 100 lines frequently used 
as founder lines to generate doubled haploid (DH) lines in a 
breeding project. However, the reference HapMap has to be 
constructed with high-coverage genome-wide sequencing 
(hcGWS; i.e., 30×), so that it can be used to perform imputa
tion on genotypic data of DH lines that are generated by the 
founder lines included in the HapMap. By this means, a rela
tively consistent SNP panel can be inferred to perform GS 
prediction. It’s worthy of attention that, because genotypes of 
SNPs inferred by imputation may include a fraction of inesti
mable mistakes, the DH lines are better descendants or close 
relatives of the founder lines included in the HapMap, and 
strict SNP filtration must be done before imputation is per
formed in order to minimize the fraction of wrong genotype 
information.

With the help of decision-making models, inputs from hu
man experience are largely minimized in a breeding pipeline. 
The main purpose is to reduce costs, and precision is not the 
top priority. Thus, the balance between cost and precision 
must be considered in actual breeding practices. As the cost 
of genotyping and phenotyping accounts for the main pro
portion of total expense in a breeding project, a GS project 
usually uses 20%–25% of the entire population to obtain 
both genotypic and phenotypic data to construct training 
dataset. Under this ratio of training and testing samples, yield 
prediction accuracy may achieve from 0.5 to 0.6 according to 
the evaluation of Pearson correlation coefficient, but the total 
cost may be approximately reduced 30% to 40%. For exam
ple, a pilot maize breeding project used � 9000 hybrids to 
train a GS model and predicted the trait performance of 
� 34,000 untested hybrids, providing an in-depth under
standing of the genetic mechanisms of heterosis and cross 
combinations for subsequent breeding cycles [6]. Another 
common issue in GS is population stratification when multi
ple panels of distantly related germplasm are involved in 
crossing. The proper partitioning of the training and predic
tion samples must be carefully considered to prevent serious 
overfitting.

More and more studies have illustrated the feasibility of in
tegrating multi-omics data to further improve prediction pre
cision based on DL or DNN to facilitate GS or genomic 
prediction (GP), such as the tools of DeepGS and DNNGP 
[10,11]. However, direct use of multi-omics data in training a 

GS model is risky, as it may cause inestimable overfitting due 
to the extremely high complexity of feature sets. Therefore, 
aforementioned feature engineering on mTraits or iTraits 
must be utilized to reduce data dimensionality prior to model 
training. Then, the dimensional vectors are regarded as fea
tures to be incorporated with genotypes of SNPs to train GS 
models. Additionally, generation of multi-omics data is costly 
and it’s impossible to generate RNA sequencing (RNA-seq) 
or metabolome profiling for each individual samples in each 
breeding cycle. We should only utilize the biological informa
tion derived from a set of multi-omics data, which is essen
tially the innate correlation of different omics datasets. 
Therefore, transferring learning with interpretable DL frame
work is promising to transfer the network layers derived 
from multi-omics data to be integrated with genotypes of 
SNP features. By this means, issues of sequencing cost and 
data complexity can be both properly solved.

A commercial breeding pipeline can be partitioned into 
multiple stages, and each stage may generate data for build
ing decision-making models. In theory, any problem solved 
by statistical models can also be solved by ML. However, 
thus far, only GS has been implemented using ML methods, 
and most other studies have been based on statistics. GS is 
widely employed for maize breeding due to the use of single- 
cross breeding in the modern maize industry: in this situation, 
genotyping parental inbred lines makes it possible to infer the 
F1 genotypes, greatly reducing genotyping costs. However, 
attention should be paid to the utility of GS for the breeding 
goals. GS is suitable for interrogating the general combining 
ability or heterotic performance between two parental pools 
using genome-wide genetic background, since heterosis is de
termine by genomic kinship rather than a few markers. Thus, 
the ultimate goal of GS is to accelerate the progress of genetic 
gain using in silico prediction to reduce field costs. 
Nevertheless, if the goal is to fine-tune a specific trait, such as 
the ability of stress tolerance, GS is unsuitable, while the ideal 
solution is molecular design breeding using a small set of 
trait-associated markers (also called genetic foreground) after 
the causal genes mapped.

Because GS may not solve all problems encountered in 
breeding, complementary models have been developed. For 
example, genome optimization via virtual simulation (GOVS) 
utilizes least-squares means to infer genomic fragments with 
beneficial effects on grain yield and simulates an assembly of 
all beneficial fragments as an optimized genome [12]. The 
simulated genome facilitates the selection of superior lines 
based on the number of beneficial fragments rather than the 
predicted phenotype. GOVS also helps identify lines with 
complementary sets of beneficial fragments. These comple
mentary lines can be crossed, and doubled haploid technol
ogy can be used to precisely pyramid beneficial fragments.

Modeling the phenotypic plasticity of plants in response to 
the environment is another important way to facilitate 
decision-making during breeding. Phenotypic plasticity 
results from genotype–environment interactions (G×E) [13]. 
The G×E model helps identify the optimal ecological range 
for achieving the highest yield productivity and estimates 
yield stability across different ecological zones. If more com
plicated climate factors are considered, the model also helps 
estimate the influence of climate change on yield performance 
and grain quality and identifies the optimal genotypes 
adapted to climate change. However, most methods for 
modeling G×E are based on linear regression algorithms to 

4                                                                                                                                          Genomics, Proteomics & Bioinformatics, 2024, Vol. 22, No. 4 
D

ow
nloaded from

 https://academ
ic.oup.com

/gpb/article/22/4/qzae051/7703285 by guest on 05 Septem
ber 2025



infer correlations between yield performance and a few envi
ronmental factors. Statistical models have become unsuitable 
for modeling increasingly complicated genotypic, phenotypic, 
environmental, and climate datasets, prompting the need for 
ML methods. Another critical issue for modeling phenotypic 
plasticity is heterogeneous plasticity between inbred lines and 
hybrids, which strongly influences model precision and must 
be considered when using ML methods to predict 
environment-specific traits from inbred to hybrid lines.

Although in theory, all problems solved by statistics can be 
all solved by ML, ML is not always the best choice. If the prob
lem is a “white box”, statistics should be used, especially when 
the number of explicitly labeled samples is insufficient to cover 
all patterns that can be learned by an ML model. If the training 
dataset is smaller than the testing dataset, an ML model will 
usually have lower prediction precision than a statistical model. 
The scarcity of labeled samples is a common issue in breeding, 
not only because phenotyping is costly and labor intensive, but 
also because certain traits are difficult to explicitly define and 
accurately measure, such as biotic and abiotic stress-related 
traits. Semi-supervised learning is a promising method for cop
ing with this issue, including positive-unlabeled learning, gener
ative adversarial network, contrastive learning, and transfer 
learning, but requires caution in its application [14]. If the data 
distribution is not uniform, inestimable overfitting may occur, 
as the bias will be amplified by predicted labels. Another option 
is multi-modal learning, which integrates complementary infor
mation in multiple modalities to discover a latent representation 
of the data. Joint DR (jDR) was effectively used to integrate 
multi-source transcriptome, copy number variation (CNV), 
microRNA, and methylome data from the same sample for 

human cancer prediction and classification. With the rapid gen
eration of omics data from plant germplasms, perhaps this 
multi-modal learning algorithm could be used to address the 
problem of a limited sample size for model training.

Building an ecosystem for AI breeding 
in plants
A common consensus is that high-quality datasets and labels 
are more important than ML models themselves. This rule also 
applies to breeding. A recent study evaluating 12 GS models by 
predicting 18 traits in six plant species showed that no single 
method performed best across all traits and species [15]. 
Hyperparameter tuning is essential for achieving the best perfor
mance using ML. This study revealed the complications of ap
plying ML to plant breeding, perhaps due to the complex 
composition of genetic materials and the influence of the envi
ronment on phenotypes. Thus, precision is not the only goal 
when applying ML to breeding: the robustness, extendibility, 
and efficiency of a model must also be considered. An ML eco
system specifically designed for AI breeding in plants is highly 
anticipated by the seed industry. This ecosystem must contain 
three major components: data, model, and application plat
forms (Figure 1). The data platform should consist of unified 
pipelines for automated collection, processing, analysis, and 
storage of genotypic and phenotypic data, facilitated by cloud- 
based computing. The model platform will include GS, G2P, 
G×E, and other decision-making models developed using ML 
and statistical methods, with automated modules used for 
model selection, feature engineering, and hyperparameter tun
ing. The application platform will consist of tools implemented 

Figure 1 The infrastructure of an ecosystem for AI breeding in plants 
The proposed ecosystem is composed of four major components. The first component is a data center that contains all types of multi-omics data 
generated from a representative germplasm bank. The second component is a library of cutting-edge ML algorithms that can be used to either support 
basic omics research in plants or offer solutions for building decision-making models in the seed industry. The third component is a knowledge base that 
contains trait-related genes and causal variations derived from multi-omics data association analysis. The last component is an application platform that 
contains a spectrum of bioinformatics tools and statistics-/ML-based decision-making models for AI breeding. AI, artificial intelligence; ML, machine 
learning; SNP, single nucleotide polymorphism; InDel, insertion and deletion; PAV, presence and absence variation; GS, genomic selection; G2P, 
genotype-to-phenotype; MAS, marker-assisted selection; G×E, genotype–environment interaction.
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from the predictive models, equipped with a user-friendly inter
face to offer services and report results to end users. Such an 
ML ecosystem will make plant breeding smarter and easier in 
this era of AI.
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