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Key message  We propose a new model to improve maize breeding that incorporates doubled haploid production, 
genomic selection, and genome optimization.
Abstract  Breeding 4.0 has been considered the next era of plant breeding. It is clear that the Breeding 4.0 era for maize will 
feature the integration of multi-disciplinary technologies including genomics and phenomics, gene editing and synthetic biol-
ogy, and Big Data and artificial intelligence. The breeding approach of passively selecting ideal genotypes from designated 
genetic pools must soon evolve to virtual design of optimized genomes by pyramiding superior alleles using computational 
simulation. An optimized genome expressing optimal phenotypes, which may never actually be created, can function as a 
blueprint for breeding programs to use minimal materials and hybridizations to achieve maximum genetic gain. We propose 
a new breeding pipeline, “genomic design breeding,” that incorporates doubled haploid production, genomic selection, 
and genome optimization and is facilitated by different scales of trait predictions and decision-making models. Successful 
implementation of the proposed model will facilitate the evolution of maize breeding from “art” to “science” and eventually 
to “intelligence,” in the Breeding 4.0 era.

Introduction

Along with rice and wheat, maize is a global staple cereal 
crop. Maize is not only an important nutrition source for 
humans, but is also a vital material in livestock feed and 
for bioenergy processes. Sustainable growth of maize yield 
per acre is critical for maintaining global food security. 
According to data released by the United Nations in 2016, 
the global human population will increase by 2 billion in 
the next 30 years and may exceed 11.2 billion by the end 
of this century (https​://popul​ation​.un.org). Based on pre-
dictions by the Food and Agriculture Organization (FAO) 
of the United Nations, cereal production needs to increase 
at least 70% by 2050 to accommodate this predicted world 
population growth (FAO 2011). To ensure food security, 
annual cereal production needs to increase from the current 

2.1 billion tons to 3 billion tons, and annual meat produc-
tion needs to increase more than 200 million tons. However, 
dramatic changes in the global climate have increased the 
frequency of extreme weather and natural disasters, both of 
which negatively influence crop production. Together, these 
global problems pose new challenges to the seed industry 
and necessitate revolutionary changes in crop breeding tech-
nology. These technologies must accelerate the cultivation of 
novel crop varieties that not only display high yield, superior 
quality, and stress resistance but are also ecologically and 
environmentally friendly. The second decade of the twenty-
first century has been marked by the rapid advancement of 
artificial intelligence (A.I.) and its broad application in the 
life sciences (Webb 2018). These advancements offer an 
opportunity for crop breeding to enter a new era character-
ized by deep integration of modern information sciences and 
biotechnologies.

Breeding 4.0: the intelligence era of maize 
breeding

In 2018, Wallace et al. suggested that the entire history of 
plant breeding could be divided into three major stages 
(Wallace et al. 2018). Using maize breeding as an exam-
ple, the Breeding 1.0 stage ranges from the origin of maize 
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breeding in southern Mexico approximately 9000 years ago 
to the nineteenth century. During this stage, maize farmers 
cultivated landrace varieties by observing phenotypes and 
selecting desired trait variations purely based on their expe-
rience. This stage was characterized by “experience breed-
ing.” The Breeding 2.0 stage comprises the entire twentieth 
century. Professional maize breeders at seed companies used 
experimental breeding with predesigned breeding schemes 
that utilized current knowledge in genetics and statistics. 
This approach is also known as “experimental breeding.” 
The Breeding 3.0 stage spans the last five decades, in which 
modern commercial breeding companies employed bioengi-
neering technologies to genetically modify crop genomes to 
artificially create desired traits. This approach is also known 
as “biological breeding.” Wallace et al. proposed that plant 
breeding technology is poised to evolve to the 4.0 stage; 
however, before successful transition from 3.0 to 4.0, three 
fundamental questions must be addressed. Each question 
is related to a major breeding objective: first, what are the 
biological mechanisms underlying environmental adapta-
tion to fast climate change; second, how do we harness the 
correlation between genotypic and phenotypic variation to 
precisely utilize trait-regulatory genes; and third, how do 
we understand the roles of deleterious alleles to break the 
bottleneck in trait improvement. With a full understanding 
of these three fundamental questions, breeders will then be 
able to directionally modify or even de novo synthesize an 
optimal crop genome toward desired traits. The Breeding 4.0 
era will be characterized by the integration of life science 
and informatics technologies to accelerate breeding cycles. 
Crop breeding in 4.0 will be the result of a Big Data-driven, 
A.I.-supported decision-making pipeline that includes inte-
grative modeling of genotypic, phenotypic, environmental, 
and field management data. Thus, Breeding 4.0 may be con-
sidered the “intelligent breeding” stage.

A.I. is a branch of applied computer science and refers to 
the use of computer programs to simulate the human brain 
in understanding and processing information. The fields of 
A.I. include robotics, natural language processing, image 
recognition and processing, expert intelligent decision sys-
tems, and most importantly, machine learning analytical 
methodologies. The machine learning (ML) field, regarded 
as the “brain of A.I.,” develops computational programs to 
build data-mining models to forecast the future, with the 
purpose of performing classifications and/or regressions. To 
build an ML system, the predictive model needs to be first 
trained by a set of training samples (training set) so that 
it can learn the sample features and establish innate cor-
relations between features and outcomes. The trained ML 
model is then applied to a set of testing samples (testing 
set) to predict outcomes based on sample features. The most 
outstanding difference between ML and statistical models 
is that ML methods are more suitable for solving black-box 

questions because they automatically derive distribution 
parameters and feature importance. In contrast, statistical 
models must establish a hypothesis using prior knowledge 
of the distribution features of the data and then fit the data 
to the corresponding statistical model. Because of its 3V 
(volume, variety, and velocity) characteristics, Big Data 
commonly generates black-box problems that are suitable 
for ML methods to solve and build models for a variety of 
prediction goals.

Development of the Breeding 4.0 pipeline will require 
revolutionary innovation driven by Big Data and facilitated 
by biotechnology and informatics to facilitate decision 
making for professional breeders. Such a scenario may be 
imagined in the context of a future breeding company. The 
genotypes of germplasm lines will be acquired using high-
throughput genotyping approaches such as next-generation 
sequencing (NGS) and SNP array platforms. Plant pheno-
types will be acquired by field robotics and drones and dis-
sected by deep learning algorithms to intelligently quantify 
trait measurements. Complex associations between geno-
types, phenotypes, and the environment will be derived by 
ML models to direct germplasm selection and plan hybridi-
zation schemes. In a biotech facility, core trait-regulatory 
genes will be identified using bioinformatic approaches and 
genome-wide association studies (GWAS) to identify can-
didate genes for functional characterization and directional 
improvements of desired traits by gene editing, synthetic 
biology, and transgenic overexpression. With the rapid 
growth of “-omics” technologies, Big Data, and gene func-
tion knowledge in maize, it may soon be feasible to in silico 
assemble all possible superior alleles at quantitative trait loci 
(QTLs) into a single virtual, optimized genome to simulate 
optimal phenotypes. In contrast to “molecular design breed-
ing,” which mostly pyramids individual genes with explicit 
functions to facilitate introgression breeding, “genomic 
design breeding” is perhaps a more appropriate strategy for 
heterotic breeding, such as for maize, where yield hybrid 
vigor involves complex intra- and inter-genome interactions 
that are not easily characterized.

Omics data foundations of genome design 
breeding

In order to achieve intelligent breeding in maize using 
genome optimization, it is necessary to characterize the 
correlations between traits and superior alleles, inferior 
alleles, and their complex interactions. The integration of 
maize omics data, including genomic, phenomic, epig-
enomic, transcriptomic, proteomic, and metabolomic data, 
will form an essential foundation for ML methods to model 
the relationships between various genetic elements as a net-
work (Cooper et al. 2014; Ma et al. 2014). Recently, a series 
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of GWAS analyses have facilitated identification of numer-
ous major-effect genes responsible for trait domestication, 
regulation, and improvement in maize (Jiao et al. 2012; Li 
et al. 2013; Ma et al. 2018; Wang et al. 2016). Nevertheless, 
the “omnigenic model” suggests that complex traits, such as 
height in humans and yield in crops, are products of many 
genes contributing to the traits with minor effects (Wray 
et al. 2018). Thus, phenotype prediction must account for 
every genetic component to fully describe the heritability of 
quantitative traits, regardless of the major or minor effective-
ness of each QTL (Wray et al. 2013). In addition, genetic 
interactions between superior and inferior alleles are of par-
ticular interest, because trait improvement during breeding is 
partially a consequence of how superior and inferior alleles 
are balanced by artificial selection (Li et al. 2015). There-
fore, the roles of superior and inferior alleles and how they 
have been fixed in modern breeding germplasms to contrib-
ute to heterosis performance and environmental adaptation 
require an in-depth investigation.

Due to the dramatic reduction in the cost of NGS, it is 
feasible to generate large-scale genotype data from actual, 
modern breeding populations that are comprised of different 
heterotic groups. High-throughput phenotyping focused on 
traits that display heterosis in the corresponding F1 hybrid 
populations is also required. Such genotypic and phenotypic 
data describing modern breeding populations may help elu-
cidate the role of genetic interactions between superior and 
inferior alleles and how such interactions have been fixed 
and utilized to generate hybrid vigor in maize production. 
For the maize basic research community, spatial and tem-
poral omics data, including transcriptomic, proteomic, epig-
enomic, and metabolomic data, need to be continuously gen-
erated in multiple inbred reference lines (i.e., B73, Mo17, 
W22, B104, PH207, and CML247). Acquisition of multi-
dimensional omics data in maize will facilitate identifica-
tion of key regulatory genes and dissection of the molecular 
networks underlying important agronomic traits and other 
biological processes (Luo 2015).

Phenomics is a young and growing interdisciplinary field 
(Houle et al. 2010). A rapid development of A.I.-supported 
crop phenomics is inseparable from the wide application of 
field robotics systems, optical imaging systems, and deep 
learning-based image recognition and processing algo-
rithms. A.I.-powered phenotyping systems are not only used 
for basic research but also represent the future of intelli-
gence agriculture and precision farming. To collect precise 
environmental parameters, Internet of Things (IoT) devices 
equipped with various electronic sensors continuously 
record field data, including meteorological, soil, insect, and 
disease conditions (Xu 2016). These environmental factors 
may be integrated into the genotype-to-phenotype (G2P) 
predictive models to enhance prediction accuracy, espe-
cially for traits heavily influenced by the environment (Li 

et al. 2018). In addition, correlation of environmental data 
with genotypic and phenotypic data may facilitate mod-
eling of genotype–environment interactions, identification 
of environment-responsive genes, and prediction of optimal 
ecological locations for a given maize variety.

Physiological phenotyping of crops is an upcoming area 
in phenomics (Ghanem et al. 2015). Under stressful condi-
tions, such as pest damage, disease infection, nutrient dep-
rivation, and other abiotic stresses, crops undergo a series 
of physiological and biochemical cellular changes (Cooper 
et al. 2014; Xu 2016). Although invisible to the human eye, 
changes in physiological phenotypes can be captured by 
various optical imaging modalities, including 3D laser scan-
ning imaging, hyperspectral imaging, multispectral imaging, 
thermal imaging, near-infrared imaging, radar imaging, and 
kinetic imaging of chlorophyll fluorescence (Ghanem et al. 
2015). The resulting image data are then dissected by deep 
learning algorithms to derive effective digital indicators that 
precisely reflect physiological changes (Ubbens and Stav-
ness 2017). As stress response-related traits are complex 
phenotypes, it is difficult to genetically map major-effect 
genes using association populations. However, the detection 
of physiological changes inside plant cells may help break 
down these complex stress-responsive features into specific 
indicators to enhance the mapping power of GWAS or link-
age analyses to identify individual causative genes (Chen 
et al. 2016).

Pitfalls of genomic selection‑assisted maize 
breeding

In marker-assisted selection (MAS), trait-linked DNA vari-
ations, mostly SNPs (single nucleotide polymorphisms), 
are used as markers to identify individual plants carrying 
desired alleles in introgression breeding programs (Bouchez 
et al. 2002). Application of MAS breeding requires cloning 
and characterization of the regulatory gene that displays a 
major effect on the target qualitative trait. MAS breeding 
has been most widely used for genetic improvement in rice, 
likely because many agronomically important rice genes 
have been cloned, allowing for successful implementation 
of molecular design breeding (Wing et al. 2018). Compared 
to rice, most maize genes are functionally uncharacterized, 
especially those involved in heterosis. In addition, maize 
breeding mostly depends on utilization of heterosis and 
involves genome-wide allelic interactions, QTL interac-
tions, and inter-genomic interactions when the two paren-
tal genomes merge in the F1 hybrid. Thus, genomic design 
breeding that considers whole-genome markers is a feasible 
and promising solution for maize breeding. Genomic selec-
tion (GS) is one form of genomic design breeding where 
it is not necessary to know the exact function of genes or 
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accurately evaluate the effectiveness of each individual 
marker (Voss-Fels et al. 2019). GS has been very successful 
in livestock breeding and has been gradually introduced into 
crop breeding, but fundamental differences between these 
two types of organisms may influence its efficacy (Hickey 
et al. 2017). This is especially true for predicting crop het-
erosis that involves a considerable proportion of nonadditive 
genetic effects (Chen 2010). As crop traits are more heavily 
influenced than livestock by the field environment, it will 
be necessary to integrate environmental factors into the GS 
model (Heslot et al. 2014).

For most existing GS tools, linear mixed models, such as 
the ridge-regression best linear unbiased prediction (rrB-
LUP) model, are used to perform regression-based predic-
tions (Endelman 2011; Piepho et al. 2012). The GS model 
first needs to be trained using a reference population (train-
ing set), in which the genotypes and phenotypes of each indi-
vidual sample are precisely measured. During training, the 
GS model infers the correlation between genotypes and phe-
notypes in the population and derives necessary parameters. 
Subsequently, the trained GS model is applied to a candidate 
population (testing set), and the genotype is used as the input 
to predict the phenotype outcome for each sample. In com-
mercial maize breeding pipelines, GS has become an impor-
tant decision-making step to assist in selection of inbred 
lines for single-cross hybridization based on the predicted 
F1 phenotypes of all possible hybrid combinations that can 
be derived from the candidate population (Guo et al. 2019). 
However, based on the authors’ knowledge and experience 
in employing GS in maize, two major pitfalls need to be 
cautioned when designing a GS experiment.

Small training set, big testing set

In a single-cross hybridization program, maternal and 
paternal inbred lines are selected from two heterotic pools, 
between which hybridizations frequently generate strong 
heterosis performance. If 500 lines were selected from each 
pool, hybridizations could generate approximately 250,000 
theoretical F1 combinations. In a commercial breeding 
pipeline, 15–20% of the total combinations are field-tested 
to obtain phenotypes for the training population. The phe-
notypes of the remaining 80–85% of combinations will be 
predicted by the GS model. However, this unbalanced pro-
portion of combinations used in the training and testing sets 
results in insufficient coverage of genotypes in the testing 
set, especially for low-frequency (0.05 ≤ MAF ≤ 0.15; Minor 
Allele Frequency) or rare alleles (MAF <  0.05), and thus 
reduces its predictive power.

We have evaluated the influence of insufficient sam-
ple coverage in a breeding population containing 1428 F1 
hybrids (unpublished data). The total population was parti-
tioned into 207 (14.5%) training samples and 1221 (85.5%) 

testing samples. The rrBLUP model was used to predict DTT 
(days to tasseling), PH (plant height), and EW (ear weight), 
three representative maize traits with different degrees of 
heritability. The overall predictive powers, as evaluated by 
Pearson correlation, for the three traits by rrBLUP were 
DTT: r = 0.371, PH: r = 0.344, and EW: r = 0.269. The 1221 
testing samples were than ranked in ascending order by the 
absolute difference between the observed and predicted 
trait values computed for each sample (Di =

|
|yi − ŷi

|
|) for 

comparison with the phenotype distribution of the 207 F1 
hybrids in training set. As shown in Fig. 1a, scissor-shaped 
distributions were observed for all three traits. Although the 
testing samples with high prediction accuracy (lowest 25% 
Di) corresponded to the center of the training sample dis-
tribution, the testing samples with low prediction accuracy 
(highest 25% Di) corresponded to the outliers of the training 
sample distribution. The remaining 50% of testing samples 
with moderate prediction accuracies were found between 
the center and outliers of the training sample distribution. 
This result indicates that the genotypes and phenotypes that 
comprise a small training set do not sufficiently represent the 
samples in the testing set, resulting in low predictive power.

A small training set may result in insensitive outlier pre-
diction, unless the training set is large enough to contain 
low-frequency genotypes (rare alleles). This is perhaps the 
biggest challenge in heterosis prediction for maize, because 
the outstanding heterosis performance is generally defined 
by the outcome of specific compatible ability (SCA) due 
to low-frequency alleles and/or occasional nonadditive 
interactions with large over-dominance effects in the hybrid 
genome. Therefore, the optimization of GS models to 
enhance the sensitivity of outlier prediction or detect and 
weigh contributions from low-frequency alleles is expected 
future developments.

Population stratification

Population stratification is another important factor that 
influences GS prediction. Population stratification has 
become an important issue because modern germplasms 
display complicated kinship due to crossing of lines from 
different heterotic subpopulations. If samples with discrep-
ant genetic backgrounds are not proportionally distributed 
among the training and testing sets, population stratifica-
tion may result in overfitting. Under such circumstances, it 
is necessary to adjust the model to remove any bias caused 
by population stratification. We tested the influence of 
population stratification using mixed F1 hybrid popula-
tions (Fig. 1b). The training set was composed of 4140 
F1 hybrids generated by crossing 207 maternal lines with 
20 paternal testers from different heterotic groups, such 
as the Reid, Lancaster, Iodent, and Tropical lines. Three 
testing sets were composed. The first testing set included 
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207 maternal lines hybridized with four testers with dis-
crepant genetic backgrounds, including two Reid and two 
Tropical testers. The scatterplot of the observed DTT phe-
notype versus the predicted DTT phenotype revealed a 
clearly stratified distribution, and the predictive power was 
low (r = 0.354). The second testing set included the same 
207 maternal lines crossed with four Reid testers, and the 
stratification problem lessened, resulting in greater predic-
tive power (r = 0.436). The third testing set included only 
hybrids generated from crossing 207 maternal lines with 
one Reid tester, and increase in predictive power due to 
stratification totally disappeared (r = 0.820). These results 
indicate that mixed genetic backgrounds in the training set 
may not influence the GS model, but if the testing set is 
composed of samples from mixed genetic backgrounds, 

model evaluations based on Pearson correlation may be 
biased.

G2P prediction using machine learning 
methods

With the rapid development of high-throughput geno-
typing and phenotyping technology, Big Data analytics 
assisted by high-performance parallel computing are con-
sidered a promising approach to utilize millions of markers 
and super-large sample sets (Ma et al. 2014). As hetero-
sis of yield-related traits is partly caused by nonadditive 
effects and influenced by the environment, nonlinear ML 
algorithms are presumed to be superior to linear GS mod-
els. Application of different ML algorithms in building GS 
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Fig. 1   Pitfalls of genomic selection in phenotype prediction. a. A 
small training set and a large testing set can cause insufficient cover-
age of low-frequency alleles and outlier phenotypes, which may result 
in low prediction power. The maize trait values of days to tasseling 
(DTT), plant height (PH), and ear weight (EW) were regularized to 
a normal distribution with values between 0 and 1. A total of 1400 
samples were used in this analysis. The first 200 samples comprised 
the training set and are indicated by black circles. The remaining 
1200 samples comprised the testing set and were ranked in ascend-
ing order by the absolute difference between the observed and pre-
dicted trait values computed for each sample (Di =

|
|yi − ŷi

|
|) , which 

corresponded to increasing prediction accuracy. Red, blue, and green 
circles represented testing samples with prediction accuracies in the 

following groups: top 25%, 25–75%, and lowest 25%. b. Population 
stratification reduces model robustness. The influence of population 
stratification on prediction accuracy was evaluated in three testing 
sets of F1 hybrids. The first testing set included 800 F1 hybrids gener-
ated by individually crossing 200 maternal lines with 4 paternal test-
ers (P1–P4). P1 and P2 are Reid lines, and P3 and P4 are Tropical 
lines. The second testing set included 800 F1 hybrids generated by 
individually crossing 200 maternal lines with four paternal testers (all 
Reid lines). The third testing set included 200 F1 hybrids generated 
by crossing 200 maternal lines with one Reid paternal tester. DTT 
was used as the phenotype, and the absolute values of DTT were nor-
malized to z-scores
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models has been found to produce ideal prediction perfor-
mance (Crossa et al. 2017). However, one of the pitfalls of 
ML methods is that inappropriate training or over-tuning 
of ML parameters may result in substantial overfitting that 
is difficult to evaluate. Thus, to ensure model robustness, 
evaluation of ML should be conducted using only one test-
ing set, but should include additional validation sets that 
are absolutely independent from the training and testing 
sets. Moreover, validation sets should not participate in 
cross-validation when training models.

To objectively compare nonlinear ML methods with the 
linear GS model, we conducted phenotype predictions using 
six ML methods and the rrBLUP model on an F1 popula-
tion with mixed genetic backgrounds from different heterotic 
groups. Unfortunately, none of the ML methods were able 
to surpass rrBLUP in their predictive power (Fig. 2a). One 

possible reason for this result is that ML methods may be 
advantageous for solving black-box problems without the 
need to know the data distribution characteristics, but for 
white-box problems in which statistical parameters are trans-
parent and derivable, statistical models are more robust than 
ML methods. In addition, in our evaluation of published GS 
software, rrBLUP ranks highly for its precision, efficiency, 
and robustness (Fig. 2b). Thus, rrBLUP is an ideal choice 
for GS analysis.

However, ML methods are not useless for G2P predic-
tion. In fact, their utility for human risk assessment has 
been demonstrated using disease-related marker panels 
(Libbrecht and Noble 2015). In contrast to rrBLUP, which 
predicts phenotypes based on the kinship of the “genetic 
background” using whole-genome markers, ML methods are 
more effective for inferring the correlation between “genetic 
foreground” and traits using a panel of major-effect markers. 
Especially for certain deep learning methods such as deep 
neural networks, convolutional neural networks, and recur-
rent neural networks, the number of features needs to be far 
more less than the number of samples. Then, the perquisite 
of appropriately using these models is accurate identifica-
tion of major-effect QTL haplotypes and development of 
universal marker panels. Otherwise, gradient vanishing and 
gradient exploding may lead to the failure of training pro-
cess. Therefore, rrBLUP and ML methods may be comple-
mentary when used to address different prediction goals. 
For instance, rrBLUP may be first used for the first round of 
selection of candidates with top-ranked grain yield based on 
the genomic relationship of samples, and then, ML methods 
can be used for the second round to select specific combina-
tions of beneficial genotypes with a small panel of SNPs 
associated with desired traits. In the past decade, numer-
ous GWAS analyses targeting different important traits 
have been performed, and similar GWAS analyses targeting 
additional traits are ongoing. In the coming years, a large 
number of maize QTLs may be available so that universal, 
major-effect QTL haplotypes from germplasm banks may 
be used to accomplish trait prediction goals (Yu et al. 2016).

G2P prediction in genomic design breeding

Decision making for genomic design breeding in modern 
maize breeding pipelines will be driven by three aspects of 
G2P prediction. Each aspect uses different scales of mark-
ers to achieve distinct trait improvement goals (Fig. 3). The 
first aspect is GS prediction to assist the selection of parental 
lines based on the phenotypes of F1 hybrids whose geno-
types are inferred from combining the two crossed parental 
genotypes. GS prediction uses whole-genome markers to 
infer correlations between genetic backgrounds and gen-
eral agronomic traits of F1 hybrids, such as maturity and 
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Fig. 2   Machine learning models versus the rrBLUP model for phe-
notype prediction. a. Six machine learning (ML) models were used 
to build genomic selection models to predict DTT phenotypes. These 
ML models included convolutional neural network (CNN), gradi-
ent boosting (GB), random forest (RF), K-nearest neighbors (KNN), 
support vector regression (SVR), and multilayer perceptron (MLP) 
models. Evaluation of the seven methods was performed on the same 
training and testing sets. The total population was partitioned into 30 
groups, and for each evaluation, 29 groups were used for training and 
the remaining group was used for testing. The rrBLUP model outper-
formed the six machine learning methods in 29 of 30 evaluations. b. 
Comparison of rrBLUP with other previously published genomic pre-
diction tools revealed that rrBLUP is a superior algorithm in terms of 
prediction precision, training efficiency, and model stability
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flowering time, ideal plant architecture, grain yield heterosis, 
general compatible ability (GCA), and SCA. By this means, 
candidate combinations of parental lines with high GCA and 
SCA of yield are selected for field trials. The second aspect 
is ML-based prediction to facilitate selection of specific 
quantitative traits unrelated to the genetic backgrounds. ML-
based prediction uses a series of QTL haplotype panels and 
major-effect tag SNPs to infer correlations between genetic 
foregrounds and target traits, such as abiotic stress tolerance, 
pest and disease resistance, fertilizer intake efficiency, kernel 
dehydration rate, and high planting density. The third aspect 
is marker-assisted selection (MAS), which uses a small panel 
of SNP markers to screen for qualitative traits that are caused 
by natural functional variations or genetically modified vari-
ations. These qualitative traits include herbicide and insect 
resistance, high amylopectin content, thermo-sensitive male 
sterility, and drought stress tolerance created by CRISPR/
Cas9 gene editing (Zhang et al. 2018).

GS has been successfully applied in modern breeding 
pipeline to predict F1 phenotypes as the genotype of a F1 
hybrid can be inferred from the two parental genotypes. 
Thus, genotyping cost is manageable to be balanced with 
phenotyping cost to partition modeling and predicting popu-
lations. To employ GS or MAS on a F2 population, each of 
F2 seed harvested from F1 plants needs to be genotyped, 
implemented by the seed-chipping technologies in which a 
small part of endosperm is sampled to extract DNA with-
out affecting normal germination (Gao et al. 2008). With 
the synthetic use of high-throughput seed chipping, DNA 
extraction, and SNP genotyping automation platforms, seed-
DNA genotyping system has become a popular solution to 
facilitate the GS or MAS to select seeds with desired geno-
types before planting in multi-national seed companies.
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Fig. 3   Genomic design breeding encompasses three aspects of G2P 
prediction. The proposed genomic design breeding pipeline includes 
three aspects of phenotype prediction. First, genomic selection is 
based on the kinship inferred from the relationship between the over-
all genetic backgrounds of the inbred lines. Thus, genomic selection 
should consider genome-wide markers. The goal is to the phenotypes 
contributed by a collection of all possible minor-effect loci, such as 
yield, heterosis, GCA, and SCA, which may also involve interactions 

between the two parental genomes. For quantitative traits that are 
determined by multiple major-effect QTLs, the haplotypes associated 
with the QTLs are identified using an association or linkage popula-
tion. Then, dozens of high-efficacy tagging SNPs for each desired 
trait are fed into the machine learning models to predict specific 
quantitative traits. Qualitative traits are caused by natural functional 
variations or genetically modified variations, such as sites for insect 
resistance, stress tolerance, and herbicide resistance
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From genomic prediction to genome 
optimization

Crop breeding essentially consists of two steps of trait 
improvement. The first step is to increase genotype and phe-
notype diversity by population development, so that new 
phenotypes are created for artificial selection. During popu-
lation development, exchange of chromosomal fragments 
can combine superior alleles, disrupt linkage between supe-
rior and inferior alleles, and amplify the frequency of rare 
superior alleles. As a result, a new genetic pool is formed 
that contains candidates with combinations of abundant 
superior alleles. These candidates are utilized in the second 
step of crop breeding, line selection. Line selection can be 
accomplished by either phenotype observation according to 
breeders’ experience or by genomic selection based on G2P 
prediction. Both methods guide breeders in the creation of 
new inbred lines. “Genomic design breeding,” assisted by 
varying scales of genomic prediction, aims to create a virtual 
blueprint so that breeders can perform the minimal num-
ber of hybridizations to create only candidate materials that 
combine the best alleles.

The rationale of “genome optimization” is to employ 
computational algorithms to simulate a virtual genome that 
possesses “optimal genotypes” composed of most of supe-
rior alleles to produce “optimal phenotypes.” It is worth 
noting that the simulated, optimized genome may never be 
created in reality, considering the fact that many superior 
alleles and deleterious alleles may reside in the same link-
age disequilibrium block which are difficult to break. The 
optimal phenotype for a target trait is the theoretical upper 
limit that a designated breeding population may generate. 
In single-cross hybrid breeding, the optimized genome rep-
resents the benchmark of the maximum potential heterosis 
utilization of grain yield that crossing of two heterotic pools 
may generate. In other words, a computationally optimized 
genome is an assembly of all most of superior alleles pyra-
mided together to express superior phenotypes. Figure 4 out-
lines how genome optimization is implemented to efficiently 
achieve maximal yield improvement using a designated pool 
of breeding materials.

For example, assume a pool of 5000 maternal lines devel-
oped from multiple elite founder lines are crossed with one 
paternal tester to generate 5000 F1 hybrids. The yield dis-
tribution of the 5000 F1 hybrids is compared with the yield 
of a check hybrid, usually an elite variety with high yield. 
Of the 5000 hybrids, 250 (top 5%) exhibit higher yield than 
the check. Genome optimization is performed in five steps. 
In the first step, IBD (Identity-By-Descent) analysis is per-
formed on the genotype data of the 5000 maternal lines, so 
that recombination hotspots are identified, and a recombi-
nation frequency map is generated. According to this map, 

the maize genome is partitioned into n IBD bins. Each bin 
represents one putative chromosomal fragment with a high 
frequency of genetic exchanges, in which m tag SNPs are 
identified to represent the haplotype of the bin. In the sec-
ond step, a genome-wide scan is performed to identify the 
haplotype most closely associated with the highest yield for 
each bin. The process is similar to a GWAS scan but is per-
formed on each bin instead of on single SNPs. The IDs of 
the lines that contributed the best haplotype for the bin are 
recorded during scanning. In the third step, the best haplo-
types identified from the n bins are consecutively assembled 
based on their genomic positions to produce a simulated, 
optimized genome. In the fourth step, the 5000 maternal 
lines are ranked based on the number of bins that each 
maternal line donates to the optimized genome. Therefore, 
the more bins that a line donated to the genome, the more 
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Fig. 4   Genome optimization to facilitate maize breeding. The details 
of the genome optimization approach to direct line selection and pop-
ulation development are described in the main text
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superior alleles it likely possesses, and thus, it displays a 
greater potential of generating high-yield F1 hybrids. In the 
fifth step, the genotypes and yield phenotypes of the 5000 
F1 hybrids are used as a training set to predict the optimal 
phenotype of the optimized genome using a GS model. As 
the optimized maternal genome is an assembly of the n bins 
that donated the best haplotypes associated with high yield, 
virtually crossing the maternal line with the paternal tester 
is expected to produce an optimized genome with a yield 
greater than that of the check.

How is the optimized genome used to direct the next 
round of population development? The most important 
information contained in the optimized genome is the num-
ber of bins, or the percentage of genomic fragments in the 
optimized genome, that each maternal line donates to the 
assembly. The breeding value of each line is then evaluated 
based on the number of donated bins instead of the yield 
of its offspring. Most importantly, because the top-ranked 
maternal lines donate complementary sets of bins, breed-
ers can use this information to select the top 5–10% of the 
maternal lines to generate new lines with minimal hybridi-
zation and with the maximal number of superior alleles for 
the next round of population development. Assuming that 
the newly developed population contains 500 new maternal 
lines, crossing with the same paternal tester may positively 
shift the overall yield distribution. In addition, the new group 
of 500 F1 hybrids is expected to contain a higher proportion 
of hybrids whose yields surpass the check and perhaps have 
achieved the ideal yield phenotype.

A proposed new breeding model 
incorporating DH production, GS, 
and genome optimization

Generation of pure inbred lines is essential for single-cross 
heterosis breeding. Doubled haploid (DH) breeding has 
become a popular approach in maize that has greatly acceler-
ated creation of inbred lines and expansion of genetic pools 
(Longin et al. 2007; Prigge and Melchinger 2012; Ren et al. 
2017). However, one obstacle restricting wide application 
of DH breeding is large-scale screening of DH lines for 
desired traits, because one round of DH production for one 
hybrid combination may generate hundreds or thousands 
of DH lines. However, only a small portion of DH lines 
are expected to carry the combination of target alleles from 
the two parents. An ideal solution would be to apply GS to 
screen DH lines using low-depth genotyping by sequencing 
(GBS) and select 5–10% of the lines as candidate lines for 
the subsequent test-crossing. If the cost of GBS is lower than 
five dollars per line (and possibly even less in the future), 
GS may eventually replace phenotype screening in the field. 
With a greatly reduced cost for screening of DH lines, mul-
tiple groups of GS-selected DH lines produced from differ-
ent combinations may be test-crossed in parallel, which will 
greatly enhance breeding efficiency.

Genome optimization is particularly applicable for DH 
breeding, as one group of DH lines is developed from two 
parents, and it is easy to trace the exchanged fragments by 
IBD analysis and evaluate the contribution of each bin to 
the target trait. In addition, because the parental lines used 
for DH production are from one complete genetic pool, the 
original pool can be used as a general reference population 
to train the GS model. It is not difficult to imagine that in the 
future, the genomic design breeding pipeline will incorpo-
rate DH production, GS, and genome optimization, which 
will significantly shorten the breeding cycle and reduce 

Fig. 5   Combining DH breeding, 
GS, and genome optimization 
into a pipeline for improvement 
of maize breeding. The details 
of the proposed maize breeding 
pipeline are described in the 
main text
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breeding costs. Such a model is especially suitable for small 
breeding teams, which account for ~ 85% of the breeding 
industry in China, to implement a small-scale breeding pro-
gram with focused goals to solve specific, local problems. 
This proposed new breeding pipeline is shown in Fig. 5.

Assume hybridizations between one paternal pool and 
one maternal pool developed from two heterotic groups 
frequently generate superior heterosis performance for 
grain yield, and each pool contains 5000 candidate lines 
for selection. During the first round of line selection, 1000 
paternal (P (1…1000)) and 1000 maternal (M (1…1000)) lines 
from the two heterotic pools are randomly selected to be 
hybridized with three elite maternal (M (a, b, c)) testers and 
three elite paternal (P (a, b, c)) testers, respectively. The two 
sets of 3000 F1 hybrids form two initial training popula-
tions with known genotypes and measured phenotypes to 
build GS models and assemble optimized genomes within 
each heterotic pool. Based on the GCAs of yield computed 
from the three test-crosses in each training set, optimized 
genomes are assembled to identify the lines that donated a 
high percentage of the fragments in the optimized genome. 
The top-ranked lines that contributed abundant, complemen-
tary, superior fragments are hybridized with each other to 
generate hybrid offspring for DH production. Assume that 
each hybrid generates 500 DH lines, but not all of them 
are worth test-crossing in the field. The 500 DH lines are 
genotyped by GBS to predict their traits using the GS model 
trained by the two initial training populations. Based on the 
GS prediction, 5–10% of the DH lines are selected from each 
heterotic pool, and hybridization between the two sets of DH 
lines generates new F1 hybrids for subsequent field testing.

As only 20% of the 5000 lines were sampled, the origi-
nal pool may still harbor 80% of the unexploited superior 
alleles, thus requiring a second round of selection. The opti-
mized genome simulated in the first round offers two layers 
of information to direct the second round: (1) the approxi-
mate number of superior lines remaining in the original pool 
and (2) the ideal phenotype predicted from the optimized 
genome establishes a “finish line” for the second round of 
selection and also represents the maximum potential of the 
original pool that can be exploited to improve the target trait. 
The second round begins with GS prediction of the remain-
ing 4000 lines in each pool, trained by the 3000 F1 hybrids. 
The trait for prediction may use either yield value or yield 
GCA computed from the three sets of test-crosses. Using 
the ideal phenotype as a reference, the top-ranked lines are 
further selected for the second round of hybridization with 
the three testers. The field-measured yield phenotype of the 
new F1 hybrids is then merged with the previous training set 
to generate a new optimized genome. The result from the 
new assembly is then used to direct the second round of DH 
production. Two to three cycles of selection are expected to 

allow for the maximum potential of the two heterotic pools 
each containing 5000 lines to be fully exploited.

It is worth noting that the optimized genome virtually 
assembled by bin haplotypes positively correlated with 
yield of F1 hybrids only reflect the accumulated addi-
tive effects of beneficial alleles. As illustrated in Fig. 4, 
the predicted F1 yield based on optimized genotypes is 
approximately positioned at the 10% percentile in field-
measured yield distribution. That means, additive accu-
mulation of beneficial alleles may maximally explain 90% 
of genetic effects contributing to heterosis. The rest 10% 
of effects may attribute to complicated epistasis interac-
tions and genotype by environment (G × E) interactions 
that are difficult to be precisely modeled. Therefore, the 
optimized genome essentially represents an optimized 
genetic background to generate high GCA, but at the same 
time maximize the opportunity to generating superior SCA 
and adaptive G × E interaction. Furthermore, the proposed 
breeding pipeline represents a naïve model that only incor-
porates DH production using F1 hybrids, and this pipeline 
is modifiable to be incorporated with rapid cycle recurrent 
selection and forward breeding. For instance, DH produc-
tion may be also applied on F2 hybrids to enhance recom-
bination rates, or utilize a small panel of trait-associated 
markers in order to reduce the original DH lines.

Concluding remarks

The history of crop breeding over the past 10,000 years 
can be described by three major eras: the 1.0 era of experi-
ence breeding, the 2.0 era of experimental breeding, and 
the 3.0 era of biological breeding. With rapid advances 
in biotechnology and information sciences, crop breeding 
is poised to evolve into the 4.0 era (Wallace et al. 2018). 
Breeding 4.0 will be defined as the era of “intelligent 
breeding,” characterized by the integration of modern 
genomics, phenomics, gene editing, and synthetic biology, 
combined with A.I. technology to form a Big Data-driven, 
A.I.-supported, decision-making pipeline. In this review, 
we summarized the rationale for optimized genome design, 
which may be implemented as a new breeding model 
beyond genomic selection. In this approach, an optimized 
genome is virtually designed to contain all possible supe-
rior alleles donated from one designated genetic pool. The 
most significant advantage of the designed genome is its 
ability to guide breeders in carrying out a new round of 
population development in addition to selection of supe-
rior lines. The new round will utilize fewer founder lines 
that all carry superior alleles that are complementary with 
each other, such that the minimal number of hybridiza-
tions are performed to combine the maximum number of 
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superior alleles. Two or three rounds of small-scale popu-
lation development are sufficient to rapidly achieve the 
trait improvement goal while exploiting the maximum 
potential of the genetic pool. We also propose a “genomic 
breeding design” pipeline for maize. This new pipeline 
will incorporate doubled haploid production, genomic 
selection, and optimized genome design, and represents a 
potential ideal solution for small-scale breeding focused 
on improvement of specific traits or local problems. Such a 
breeding model may be especially suitable for the Chinese 
maize breeding industry, which is mostly composed of 
small individual breeding teams. Future implementation 
of the suggested breeding pipeline will promote a revolu-
tionary change in maize breeding from “art” to “science” 
and eventually to “intelligence” in the Breeding 4.0 era.
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