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CropGBM: An Ultra-Efficient Machine Learning Toolbox
for Genomic Selection-Assisted Breeding in Crops

Yuetong Xu, John D. Laurie, and Xiangfeng Wang

Abstract

Continued improvement and falling costs of DNA sequencing have accelerated the increase in genomic
resources for crop plants. From these efforts, considerable genetic diversity has been found and is aiding in
the identification of markers for breeding purposes. High-density molecular markers have allowed for
marker-assisted selection of quantitative traits that are controlled by a small number of genes. Recently,
whole genomic selection has been proposed where markers genome-wide are used to estimate the contri-
bution of all loci to traits of interest. In this chapter we outline the steps needed to perform genomic
selection using machine learning. We describe our method called Crop Genomic Breeding Machine
(CropGBM) and demonstrate its use on diverse maize lines containing high-density markers.
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1 Introduction

Traditional breeding is primarily based on phenotype selection.
Breeders select excellent offspring by observing crop phenotypes
to achieve genetic improvement of target traits. Advances in molec-
ular genetic technology have identified a wide range of genetic
variations in crop genomes, from which a large number of molecu-
lar markers associated with traits are selected to accelerate the
breeding process. Marker-assisted selection (MAS) [1] has been
commonly utilized to assist breeding, and is usually only effective
for qualitative traits controlled by single genes with major effects.
For many important agronomic traits controlled by numerous
quantitative trait loci (QTLs) in which each QTL contributes a
minor effect to the phenotype, MAS is usually not effective [2–
4]. First of all, markers adjacent to QTL sites with insignificant
effect may be omitted. Secondly, due to the insufficient coverage
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and low-density markers, the accumulative influence of the QTLs
contributing to the traits cannot be accurately estimated. There-
fore, MAS is usually unable to direct breeding for quantitative
traits, such as yield and resistance traits. With the rapid advance of
sequencing technology that enables high-density molecular mar-
kers, whole genomic selection (GS) technology has been proposed.
GS utilizes genome-wide markers, which may avoid the omission of
small-effect markers, to estimate the contribution of all loci in the
genome to traits, based on the calculation of a genomic estimated
breeding value (GEBV) derived from a GS predictive models with
the genome-wide markers as input [5]. Assisted with the predicted
phenotype or GEBV from the GS model, breeders thus can pre-
cisely select breeding material or design breeding schemes to
greatly shorten the breeding cycle. For crops with heterosis, bree-
ders evaluate inbred lines not only based on parental phenotypes
but also the potential for creating superior hybrids. In the seed
industry, GS usually uses 20% of the total samples as training
population to construct a predictive model to predict the pheno-
type of the offspring of untested hybrid combinations, from which
the general combining ability (GCA) is estimated to accelerate
screening [6]. Also, GS can infer the genotype of the F1 hybrid
offspring based on their parental genotypes, which may greatly
reduce the cost for genotyping [7].

Currently, the most commonly used GS algorithm is to apply
regression analysis to predict phenotypes, which are mainly divided
into two categories: the BLUP (best linear unbiased prediction)
method represented by gBLUP (genomic BLUP) and rrBLUP
(ridge regression BLUP) and the Bayesian method represented by
Bayes-A and Bayes-B. The traditional BLUP-type method con-
structs a pedigree matrix inferred from the samples based on the
breeding history, and then uses MLM (mixed linear model) to
calculate the EBV (estimated breeding value) [8]. In contrast,
gBLUP computes a pedigree matrix containing the genomic rela-
tionship between each pair of the samples based on the genotype of
all the samples in one breeding population, and then uses this
correlation matrix instead of the kinship matrix to genomically
estimate EBV (referred to as GEBV) for each sample. Additionally,
rrBLUP treats the labeling effect as a random effect, assuming it is a
standard normal distribution, and then sums up the labeling effects
to estimate GEBV [9]. The Bayesian method assumes that the
labeling effect obeys a certain prior distribution, so problems such
as hyper-parameter optimization for the prior distribution exist.
However, if the mark set is too large, the performance of the
Bayesian method is not comparable to the BLUP-based method
[5]. Although gBLUP has been widely used in building GS models
due to its high efficiency and accuracy, disadvantages still exist
especially when given extra-large sample sets. First, processing of
genotypic data is complicated, as gBLUP requires the conversion of
genotypes from the character forms of A, T, G, and C to digital
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forms of 0, 1, and 2, according to the minor allele frequencies
(MAFs) for each SNP site; when the population is changed, this
conversion has to be redone which may cost significant amounts of
computing time. Second, gBLUP struggles to capture the complex
nonlinear relationships between genotype and phenotypes, as
gBLUP is based on linear mixed-effect models. Third, the kinship
matrix derived from one designated population is non-extensible,
which means that if the training population is changed, the kinship
matrix has to be reconstructed, especially when the genetic
composition and population structure are complex; otherwise,
problematic model fitting may occur that generates a great deal of
false-positive results. Fourth, the linear model of gBLUP is efficient
at solving regression problems; however, many agronomic traits are
multi-classification problems which require a more appropriate
method for solving rather than using a regression model.

In the recent years, high-throughput genotyping and pheno-
typing technologies have been rapidly advancing concomitantly
with lowering costs. This has resulted in the rapid accumulation
of genotypic and phenotypic data from breeding materials, inbred
lines, and F1 hybrids collected from actual breeding programs.
Thus, the ever-accumulating large datasets are gradually forming
a Big Data environment, which increases the feasibility of utilizing
machine learning-based paradigms to perform data-driven deci-
sion-making for breeding. To overcome the innate shortcomings
of traditional GS methods, adoption of machine learning
(ML) theory and algorithms for genomic selection has been highly
anticipated. Several types of ML algorithms including SVM
(support-vector machine), RF (random forest), GB (gradient
boost), LGB (light gradient boost), and other machine learning
methods are gradually being applied to biological problems such as
genomic selection [10–12].

ML methods do not require the distribution and variance of
labeling effects, and can fully explore the nonlinear relationship
between labels by continuously learning data and optimizing para-
meters. According to our unpublished research (Yan et al., unpub-
lished), an ensemble learning paradigm – gradient boost (GB) in
ML outperformed other types of ML models. One of its variants
LightGBM (gradient boosting machine) exhibited great advan-
tages over gBLUP, rrBLUP, and Bayesian methods, as well as
other types of ML algorithms. A great advantage is its ultra-
efficiency in terms of computing when training models. Perfor-
mance testing on a large population containing 100,000 samples
showed that, while rrBLUP may take almost 1 month to accom-
plish model training, LightGBM only used 9 min on a small-scale
server. Thus, we implemented the LightGBM algorithm as a tool-
box, called CropGBM (Crop Genomic Breeding Machine), to
carry out genomic selection for breeding. In this chapter, we illus-
trate the usage of CropGBM in terms of utilizing machine learning
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for genomic selection-assisted breeding in crops, including stream-
line analysis of data preprocessing, population structure analysis,
feature selection, and phenotype prediction. The CropGBM tool-
box and example dataset are freely available for academic research
proposes at https://ibreeding.github.io.

2 Example Dataset

The example dataset used here for demonstrating the functionality
of CropGBM is composed of 6210 maize F1 hybrids generated by
crossing 207 maternal lines with 30 paternal lines, including geno-
types of 4903 SNPs and phenotypes of flowering time (DTT, days
to tasseling), plant stature (PH, plant height), and kernel yield (EW,
ear weight). The 4903 SNPs were selected from a total of 14.8
million SNPs generated from whole-genome resequencing of 1458
inbred lines that were used for constructing the F1 hybrid popula-
tion. The example dataset are freely available at https://github.
com/YuetongXU/CropGBM_Tutorial-data.

2.1 Hardware

Configuration

of the Server

There is no specific hardware requirement for running CropGBM
programs. The choice of hardware is determined according to the
sample size and number of SNPs. The configuration of the server
used for developing CropGBM is as follows.

CPU Xeon CPU (E5–2665 2.40GHz, 8 Cores) � 2

Memory 128 Gb

GPU NVIDIA GeForce GTX-P8 1080 � 4

2.2 Software

Environment

and Preinstalled

Libraries

Linux operating system: Ubuntu 16.04.5 LTS, 18.04.2 LTS, is
recommended.

CropGBM: A toolbox that is a one-stop solution for genomic
selection-assisted breeding based on the gradient boosting algo-
rithm with ensemble learning paradigm. It features a streamlined
analytical pipeline with genotype processing, phenotype
processing, population structure analysis, SNP screening,
genotype-to-phenotype (G2P) prediction, data visualization, and
other functional modules. Additionally, it includes t-SNE and
OPTICS to analyze and visualize population structure. The kernel
package used in CropGBM is the “LightGBM” package to perform
regression and classification problem. Installation instruction of
CropGBM may be accessed via https://ibreeding.github.io/.

Plink1.9: PLINK is required to perform a set of large-scale
analyses in a computationally efficient manner, to process the geno-
type and phenotype data. The tool of Plink1.9 may be obtained
from the download address http://www.cog-genomics.org/plink/
1.9/.
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GPU: CropGBM supports GPU acceleration to speed up the
process of model training with three to five times increase. If your
server is equipped with a GPU card, you may want to check the
ability of the GPU in terms of scientific computing via https://
developer.nvidia.com/cuda-gpus. This website may return the
GPU type, and help the users select the appropriate compute uni-
fied device architecture (CUDA) toolkit to provide the necessary
environment for GPU-accelerated computing. The CUDA down-
load address is https://developer.nvidia.com/cuda-downloads.

3 Analytical Procedure of Running CropGBM

CropGBM supports two modes to configure parameters prior to
running the program, using configuration files to perform stream-
lined analysis or direct command lines to add parameters. The
configuration file documents the parameters and the corresponding
values in one single file, so that it is convenient for users to uni-
formly manage and reuse a large number of parameters.

3.1 Preprocessing

of Genotype

and Phenotype Data

CropGBM calls the software Plink1.9 for preprocessing of geno-
typic data. To ensure a high quality of SNP set, the following steps
need to be done, including screening of incomplete samples and
SNP sites according to deletion rate and MAFs, imputation of
missing genotypes based on high-frequency genotypes, and
removal of redundant SNPs based on linkage. Most importantly,
CropGBM converts the character-based genotypes (such as AA,
AC, CC) to digit-based genotypes (0, 1, 2). Additionally,
CropGBM also supports statistical analysis of genotype data such
as missing rate, heterozygosity rate, and MAF distribution, so that
the users may examine the quality of the genotype data. Moreover,
system-level phenotype variation may exist to influence G2P pre-
diction, which is caused by population stratification. Thus, for
certain situations, preprocessing of phenotype data is also required.
CropGBM utilizes the Z-score algorithm to remove systematic bias
of phenotype across different populations. The detailed usage is
shown below.

3.2 Genotype Data

Preprocessing

3.2.1 Filter and View

Overall Data

$ cropgbm -c configfile.params -o cropgbm_result/ -pg all --file-

prefix genofile --fileformat bed --snpmaxmiss 0.10 --samplemax-

miss 0.10 --maf_max 0.05 --r2_cutoff 0.7

This command filters the data based on the SNP miss rate
(--snpmaxmiss 0.10), the sample miss rate (--samplemaxmiss 0.10),
theminimumallele frequency (--maf_max0.05), and r ^2 (–r2_cutoff
0.7) to generate files in BED and PED formats and distribution
histograms showing the overall situation of the data (Fig. 1).
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3.2.2 Extract

and Remove Specific ID

of Samples and SNP Data

$ cropgbm -c configfile.params -o cropgbm_result/ -pg filter --

fileprefix genofile --keep-sampleid-path ksampleid_file.txt --

extract-snpid-path ksnpid_file.txt

$ cropgbm -c configfile.params -o cropgbm_result/ -pg filter --

fileprefix genofile --remove-sampleid-path rsampleid_file.txt --

exclude-snpid-path rsnpid_file.txt

This command extracts and removes the data of specific
samples according to the sample ID by --keep-sampleid-path or
--remove-sampleid-path, and the data of a specific SNP in all sam-
ples according to the SNP ID by --extract-snpid-path or --exclude-
snpid-path.

3.3 Conversion

of Character-Based

Genotypes to Digits

$ cropgbm -c configfile.params -o cropgbm_result/ -pg filter --

fileprefix genofile --recode --remove-sampleid-path rsampleid_-

file.txt --exclude-snpid-path rsnpid_file.txt

The parameter --recode indicates that the recoding operation is
performed on the genotype data. The change rule is 00-> 0,
01-> 1, 10-> 1, 11-> 2. The genofile_filter.geno in the output
file is converted genotype file.

3.4 Running

the CropGBM

with Command-Line

Parameters

as a Pipeline

$ cropgbm -c configfile.params -o cropgbm_result/ -pg all --

fileprefix genofile --fileformat ped --snpmaxmiss 0.10 --snpmax-

miss 0.10 --maf_max 0.05 --r2_cutoff 0.7 --recode --keep-sam-

pleid-path ksampleid_file.txt --extract-snpid-path ksnpid_file.

txt

Fig. 1 Distribution of heterozygosity rate
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Except for the -c and –pg parameters, all of the other para-
meters can be set through the configuration file and omitted on the
command line.

4 Phenotype Data Preprocessing

4.1 Extract

and Visualize

Phenotype Data

$ cropgbm -c configfile.params -o cropgbm_result/ -pp --phe-plot

--phefile-path phefile.txt --phefile-header --phefile-sep

The phenotype file contains at least two columns of data. By
default, CropGBM treats the first column as the sample ID and the
second column as the phenotype data which can be visualized as a
histogram distribution (Fig. 2).

4.2 Extract

and Visualize

the Phenotype Data

According

to Sample ID

$ cropgbm -c configfile.params -o cropgbm_result/ -pp --phe-plot

--phefile-path phefile.txt --ppgroupfile-path phefile.txt --

ppgroupfile-sep ’,’ --ppgroupid-column 3 --ppgroupfile-header

This command generates a phefile_scatter.pdf file to facilitate
examining whether population stratification of phenotype occurs in
different groups of samples (Fig. 3).

4.3 Normalization

of Phenotype Data

with Z-Score

$ cropgbm -c configfile.params -o cropgbm_result/ -pp –phe-

plot –phefile-path phefile.txt –ppgroupfile-path phefile.txt –

ppgroupfile-sep ‘,’ –ppgroupid-column 3 –ppgroupfile-header –

phe_norm –norm-mode z-score

Fig. 2 Phenotype distribution represented by histogram plot
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This command performs Z-score normalization on phenotype
data to remove between-group stratification (--norm-mode z-score)
(Fig. 4).

4.4 Conversion

of Phenotype Data

# recode phenotype data into continuous non-negative integer

$ cropgbm -c configfile.params -o cropgbm_result/ -pp –phe-

recode word2num –phefile-path phefile.txt

This command converts phenotype data into continuous non-
negative integers. The parameter --phe-recode specifies the recoding
operation on the phenotype data. The optional value is [word2-
num, num2word]. Word2num means conversion of phenotype
data into continuous nonnegative integer form, and num2word
means reconversion of continuous nonnegative integer form into
phenotype data. This requires a conversion table corresponding to
integers and phenotype. When performing classification tasks,
LightGBM only accepts consecutive integers with example labels
[0, N]. If the training samples are from 5 groups, [0, 1, 2, 3, 4] is
needed as the label of the five groups, but this usually does not
match the group name. Using this parameter, the program can

Fig. 3 Phenotype distribution of 30 populations of F1 hybrids before normalization
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implement a reversible conversion between sample labels and [0,
N] consecutive integers, providing compatible phenotype data for
downstream classification tasks. The phefile.word2num in the out-
put file is a correspondence file between phenotype data and con-
tinuous nonnegative integer.

5 Population Structure Analysis

As population stratification may cause model overfitting, it is
important to understand population structure and the genetic
composition of the samples before constructing the model using
CropGBM. Then, the training and testing dataset may be appro-
priately partitioned to avoid overfitting. In addition to the com-
monly used PCA (principal component analysis) and K-means
clustering algorithm, CropGBM also integrates nonlinear algo-
rithms—t-SNE and OPTICS—to visualize the population
structure.

Fig. 4 Phenotype distribution of 30 populations of F1 hybrids after Z-score normalization
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5.1 PCA

and K-Means

Clustering Analysis

and Visualization

of Population Structure

$ cropgbm -c configfile.params -o cropgbm_result/ -s --genofile-

path filename_filter.geno --structure_plot --redim-mode pca --

cluster-mode kmeans --n-clusters 30

This command clusters genotype data based on user-specified
dimensionality reduction (--redim-mode pca) and clustering (--clus-
ter-mode kmeans) algorithms. The output files are filename.cluster,
filename_redim.pdf, and filename_cluster.pdf. The filename.cluster
file is the clustering result. The filename_redim.pdf displays the
dimensionality reduction results in the form of a scatter plot
(Fig. 5). The filename_cluster.pdf displays the clustering results in
the form of a scatter plot, with different categories indicated by
different colors (Fig. 6).

5.2 t-SNE

and OPTICS Clustering

Analysis

and Visualization

$ cropgbm -c configfile.params -o cropgbm_result/ -s --genofile-

path filename_filter.geno --structure_plot --redim-mode tsne --

window-size 5 --cluster-mode optics

The filename_reachability.pdf in the output file displays the
reachable distance between each sample in the form of a scatter
plot, which is output only when the --redim-mode value is t-SNE

Fig. 5 PCA representation of the 30 populations indicates strong population
stratification
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(Fig. 7). Different categories are represented by different colors,
and discrete points are represented by black dots. At the same time,
a plot of population structure constructed by the t-SNE algorithm
is also generated with different categories represented by different
colors (Fig. 8).

6 Constructing Genomic Selection GS Model with Training Samples

Construction of the GS model is the core functionality of
CropGBM. Similar to other ML algorithms, the quality of the
parameters is essential to the precision and performance of the
predictive model to ensure the robustness and precision of the
model. To avoid problematic overfitting, multiple validation sets
are highly recommended to derive the most optimal parameters
with the cross-validation analysis.

6.1 Cross-Validation

Analysis

$ cropgbm -c configfile.params -o cropgbm_result/ -e -cv --

traingeno train.geno --trainphe train.phe --cv-nfold 5 --min-

detal 0.5

Fig. 6 PCA representation of the 30 populations. Samples in the same population
are colored by the same colors

Machine Learning for Genomic Breeding 143



This command will estimate the accuracy of the model under
different iterations. The accuracy is measured by mean square error
(MSE) between the prediction result and the actual phenotype
value. It’s worth noting that, when the difference between training
and testing set is considerably large, model precision may not be
objective and it is necessary to sacrifice precision to ensure model
robustness.

6.2 Training Model $ cropgbm -c configfile.params -o cropgbm_result/ -e -t --train-

geno train.phe --trainphe train.phe --validgeno valid.geno --

validphe valid.phe

This command will estimate the prediction accuracy of the
model on the validation set at different iterations. The output
model file is train.lgb_model, in which model structure and para-
meters are documented for the subsequent prediction of the phe-
notypes of testing samples. If a validation set is not provided, the --
validgeno and --validphe parameters can be omitted. It is important
to note that CropGBM only recognizes different SNPs by index,
not by column name. If the SNP of the same column is different

Fig. 7 OPTICS plot of the 6210 F1 hybrids to illustrate the genetic similarity
among samples
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between the two datasets, the program cannot recognize
it. Therefore, the training set, testing set, and validation set must
be consistent in terms of using the same SNP index; otherwise, the
prediction result is non-reference.

7 Feature Selection Functionality

Similar to other ML algorithms, CropGBM may perform feature
selection analysis during the training process, so that features with
high predictive effectiveness may be automatically identified.
CropGBM derives a so-called parameter of information gain
(IG) to rank the predictive effectiveness for each feature. As a
matter of fact, the higher the IG, the higher the probability of the
genotype being associated with the trait. Therefore, feature selec-
tion in CropGBM is similar to the GWAS analysis, which can be
used to identify SNPs with significant association to a target trait.
This means that a large number of nonrelevant SNPs may be
removed and a highly condensed marker panel may be constructed
according to the feature selection functionality in CropGBM.

Fig. 8 t-SNE plot to illustrate the population stratification of the 6210 F1 hybrids
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$ cropgbm -c configfile.params -o cropgbm_result/ -e -t -sf

--bygain-boxplot --traingeno train.geno --trainphe train.phe

--gain-min 0.05 --colorbar-max 0.6 --cv-times 5

This command will generate five output files, including train.
lgb_model, train.feature, train_bygain.pdf, train_random.pdf, and
train_heatmap.pdf. The train.lgb_model is the model file. The tree
structure of each training and the gain value of each node are
recorded. The train.feature contains the selected feature with high
information gain. The information gain value of each SNP in each
decision tree is recorded. The train_bygain.pdf shows the variation
of the model error with the addition of SNP in the form of a scatter
plot. The program repeated the fivefold cross-validation on the
training set using the added SNP (Fig. 9). The x-axis coordinate
in the figure is the new SNP ID added in the model, and the order is
added according to the featureGain_sum value of the SNP in the
train.feature file from largest to smallest. The y-axis coordinate is
the prediction error. The train_random.pdf shows the change of

Fig. 9 SNP features sorted by feature importance based on the value of information gain inferred by CropGBM
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model error with the addition of SNP in the form of boxplots
(Fig. 10). The x-axis in the figure is the number of SNPs used by
the model. Since the SNP used in each cross-validation is randomly
extracted from all SNP, there is no SNP ID. The y-axis is the
prediction error. The train_heatmap.pdf files shows the gain value
and change regularity of each SNP in different decision tree in the
form of a heat map, that is, the information in the train.feature file
(Fig. 11). The x-axis coordinate in the figure is SNP ID, which is
arranged in descending order from the featureGain_sum value of
the SNP in the train.feature file; the y-axis coordinate is the index of
the decision tree.

Additionally, CropGBM may use different sets of SNPs during
the modeling process, especially when the SNP set is excessively
redundant. Thus, SNPs significantly associated with phenotypes
may not be accurately identified. Therefore, it is recommended
that users select no more than 10,000 SNPs for modeling to ensure
the accuracy of the feature selection functionality.

Fig. 10 Randomized SNP features sorted by feature importance based on the value of information gain inferred
by CropGBM
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7.1 Prediction

of the Phenotypes

of Testing Samples

After the model is well trained by CropGBM, the final step is to
perform phenotype prediction with genotypes as input from the
testing population. As long as the prediction step is accomplished,
the entire pipeline of CropGBM is finished. The trained model may
be repeatedly used for prediction, and the result file is recorded in
train.predict:

$ cropgbm -c configfile.params -o cropgbm_result/ -e -p --

testgeno test.geno --modelfile-path train.lgb_model

8 Concluding Remarks

In this chapter, we demonstrate the basic functionality and utility of
CropGBM with an example dataset generated from a maize breed-
ing program to illustrate the power of machine learning to perform
genomic selection-assisted breeding. According to our benchmark
testing, the most advantageous merit of CropGBM is ultra-high
efficiency in terms of model training compared to rrBLUP and
gBLUP. For example, rrBLUP took over 17 hours and 116 Gb
memory to finish model training. In comparison, CropGBM only
took 8 minutes and 20 Gb memory on the same server. When the

Fig. 11 Heat map of importance SNP markers selected by CropGBM. The SNP markers are sorted by feature
importance based on information gain inferred by CropGBM
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sample size increased to 100,000 samples, rrBLUP failed to train
the model. On the same dataset, CropGBM only used 15 minutes
and 40 Gb memory with only CPU computing used. If GPU
acceleration is enabled, this procedure may be reduced to only
4 min. With the rapid advance of genotyping technology and
drone-carried machine vision systems to automatically collect crop
traits, phenotypes will not be the limit to traditional agronomic
traits, but expansion to include physiological traits captured by
hyperspectral cameras will be possible [13]. Therefore, it is foresee-
able that breeding data may explode in the near future forming a
Big Data environment for the seed industry. Thus, the ultra-high
efficient CropGBM toolbox will be an important, one-stop solu-
tion to construct data-driven decision-making models for crop
breeding.

In addition, gBLUP or rrBLUP derives the linear, additive
effect of alleles in a binary fashion (biallelic), namely, presence or
absence corresponding to 0 or 1. They also require converting the
genotypes into 0, 1, and 2 for regression analysis. However, when
the number of alleles exceeds two, the biallelic effect may not be
properly inferred by a linear model when the SNP is in a
non-biallelic status. When the crop species features a polyploidy
genome such as wheat, the situation becomes even more compli-
cated. If the prediction is only carried on biallelic SNPs, a large
amount of genetic information may be lost. Thus, one critical
feature of CropGBM is that it may use one-hot coding scheme to
represent genotypes rather than only using 0, 1, 2 to represent the
frequency of bi-alleles in the population. This is likely another
important reason why the precision of CropGBM is slightly higher
than rrBLUP for a certain circumstance.

Moreover, the feature selection functionality is another advan-
tageous merit of CropGBM compared to rrBLUP, which may be
used to identify trait-associated SNPs. By this means, the initial
SNP set containing tens of thousands of markers can be signifi-
cantly condensed to a small marker panel containing less than
100 markers. Therefore, this genotyping platform with the ability
for multiplexing samples may be used to further reduce genotyping
cost. Our analysis proved that the SNPs selected by CropGBMwith
high predictive effectiveness are mostly located within the QTL of
functionally known genes previously identified by GWAS or QTL
mapping. Thus, CropGBM offers an avenue for gene discovery and
identification of important genetic variation in breeding programs.
In summary, the successful application of CropGBM in genomic
selection indicated that machine learning facilitated with artificial
intelligence is a promising technology to facilitate Big Data-driven
breeding.
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