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Summary

� The advent of full-length transcriptome sequencing technologies has accelerated the dis-

covery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either

tailored for short-read RNA-Seq data or designed for human and animal studies. The dispari-

ties in AS patterns between plants and animals still pose a challenge to the reliable identifica-

tion and functional exploration of novel isoforms in plants.
� Here, we developed integrated full-length alternative splicing analysis (iFLAS), a plant-

optimized AS toolkit that introduced a semi-supervised machine learning method known as

positive-unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the

investigation of AS functions from various perspectives, such as differential AS, poly(A) tail

length, and allele-specific AS (ASAS) analyses.
� By applying iFLAS to three full-length transcriptome sequencing datasets, we systematically

identified and functionally characterized maize (Zea mays) AS patterns. We found intron

retention not only introduces premature termination codons, resulting in lower expression

levels of isoforms, but may also regulate the length of 30UTR and poly(A) tail, thereby affect-

ing the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns

in two genes within heterosis offspring, highlighting their potential value in breeding.
� These results underscore the broad applicability of iFLAS in plant full-length transcriptome-

based AS research.

Introduction

Alternative splicing (AS) is an important mechanism of transcrip-
tional regulation in eukaryotes, which dramatically expands the
diversity and complexity of the transcriptome in the context of a
relatively limited genome background and gene repertoire
(Chaudhary et al., 2019). The resultant isoforms usually play cru-
cial roles in various aspects, including cell differentiation, tissue-
specific expression, and stress responses, enhancing an organism’s
adaptability (Marasco & Kornblihtt, 2023). In humans, up to
95% of multi-exon genes undergo AS (Pan et al., 2008); while in
Arabidopsis (Arabidopsis thaliana), the proportion is c. 61%
(Marquez et al., 2012). In-depth research on AS in plants not
only provides a comprehensive understanding of complex physio-
logical processes, but also helps the identification of key genes
and regulatory pathways that can be targeted to accelerate plant
breeding and improvement.

Advances in next-generation sequencing (NGS) have revolu-
tionized AS studies at the transcriptome level (Sultan et al.,
2008). However, the ongoing constraint of limited read lengths
in NGS data still poses a formidable technical hurdle accurately
characterizing AS patterns from a full-length perspective (Wang
et al., 2019). Long-read transcriptome sequencing ingeniously
alleviates this issue by directly sequencing full-length mRNA
molecules, unlocking a deeper transcriptome understanding and
greatly expediting functional study of AS and novel isoforms
(Stark et al., 2019). However, current full-length transcriptome
sequencing technologies are plagued by high error rates and rela-
tively low sequencing throughputs for a given cost, posing
a challenge in developing an effective algorithm model capable
of reliably identifying AS events and novel isoforms (Hu et al.,
2021).

Gene models and AS patterns differ between plants and ani-
mals. For example, plants contain more single-transcript genes
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and shorter introns than animals (Jia et al., 2020). While skipped
exon (SE) events are more prevalent in animals (Keren et al.,
2010), plants tend to exhibit a higher frequency of intron reten-
tion (IR; Marquez et al., 2012). Currently, cutting-edge AS ana-
lysis tools for plants, such as 3D RNA-seq (Guo et al., 2021) and
ASTOOLS (Qi et al., 2022), primarily cater to short-read RNA-
Seq data. Meanwhile, long-read AS tools, like FLAIR (Tang
et al., 2020) and IsoTools (Lienhard et al., 2023), are predomi-
nantly designed and tested on human and animal data, poten-
tially lacking a plant-specific perspective. Moreover, these tools
are often tailored for specific data types or research interests,
restricting their broader utility for comprehensive AS exploration.
Thus, there is an urgent need for systematic method optimization
and tool integration in the field of long-read AS research in
plants.

In this study, we first applied a semi-supervised machine learn-
ing (ML) strategy, known as positive-unlabeled (PU) learning
(Bekker & Davis, 2020), to reliably identify novel isoforms in
three representative full-length maize (Zea mays) transcriptome
datasets. We then investigated maize AS events and their func-
tional implications from three perspectives: differential AS
(DAS), AS-related differential poly(A) tail length, and allele-
specific AS (ASAS). Finally, we developed and comprehensively
evaluated the integrated full-length alternative splicing analysis
(iFLAS) toolbox, which offers a ‘one-stop’ solution for plant
full-length AS analysis by integrating and optimizing multiple
methods and tools. iFLAS streamlines the processing of raw
sequencing data, ensures accurate isoform and AS event identifi-
cation, and provides versatile result exploration and visualization
to meet diverse research interests.

Materials and Methods

Collection of full-length transcriptome datasets

We comprehensively evaluated iFLAS using three maize full-
length transcriptome sequencing datasets. The maize cross panel
(MCP) dataset consisted of four maize lines: B73, Ki11, and their
reciprocal hybrid lines (Wang et al., 2020). For each line, embryo
and endosperm at 20 d after pollination (DAP) and root at 14 d
after germination were collected, and then, PacBio long-read and
Illumina pair-end 150 (PE150) transcriptome sequencing were
performed on the mRNAs from each tissue. The maize direct
RNA sequencing (MDRS) panel dataset focused exclusively on
the B73 line. Kernel at 24 DAP and 14-d-old seedlings was col-
lected, and total RNAs were sequenced using Nanopore long-
read and Illumina PE150 transcriptome sequencing, respectively.
The maize inbred panel (MIP) dataset comprised eight maize
lines: B73, Chang7-2, Mo17, Huangzao4, PH207, PH4CV,
PH6WC, and Zheng58. For each line, mRNAs were collected
from the 20-d-old seedlings, followed by PacBio long-read and
Illumina PE150 transcriptome sequencing. To further showcase
the broad applicability of iFLAS across different plant species, we
collected full-length transcriptome data and corresponding Illu-
mina NGS data from leaf tissues of other four representative
plants: rice (Oryza sativa cv. Nipponbare, monocotyledons),

Arabidopsis (col-0, dicotyledonous), potato (Solanum tuberosum
cv. C88, autotetraploid), and wheat (Triticum aestivum cv. Chi-
nese Spring, heterohexaploid). The demo dataset and result of
maize have been deposited on GitHub repository (https://github.
com/CrazyHsu/iFLAS), and the source datasets can be accessed
with project ids listed in the Data availability section.

Preprocessing of raw sequencing data

For the raw data generated by different sequencing platforms, we
implemented different data preprocessing workflows to ensure
high-quality FASTA/FASTQ reads. For PacBio bam data, we uti-
lized CCS (v.4.2.0) to generate circular consensus sequence (CCS)
reads, with parameters ‘--min-passes 2 --min-rq 0.9 --min-length
50’, and then used LIMA (v.2.0.0) and ISOSEQ3 (v.3.3.0) to obtain
full-length reads by removing primers, barcodes and poly(A)
sequences from CCS reads. For Nanopore FAST5 data, we used
GUPPY (v.3.4.5) and NANOPOLISH-POLYA (v.0.11.1; Workman
et al., 2019) to perform base calling and acquire poly(A) tail
length information for each mRNA molecule. Regarding Illu-
mina RNA-Seq data, we applied FASTP (v.0.20.1; S. Chen
et al., 2018) with the parameter set as ‘-l 150 -q 20’ for read qual-
ity control. FMLRC2 (v.0.1.4; Wang et al., 2018) was employed
for long-read correction in a hybrid-correction strategy with para-
meters set to ‘-k 25 59’, except for ASAS analysis, to avoid inter-
ference with allele genotype identification.

Reads mapping, isoform collapsing, and junction refining

We employed MINIMAP2 (v.2.18-r1015; Li, 2018) and HISAT2
(v.2.2.0; Kim et al., 2019) to map long-read and short-read tran-
scriptome sequencing data to the maize RefGen_v4 genome
assembly (release 50), in which the maximum intron length was
set to 10 000 to accommodate the relatively short intron length
in maize. Cupcake (v.Py2_v8.7x) was then utilized for isoform
collapsing, and the parameters for MCP and MIP dataset were
set to ‘--dun-merged-5-shorter --max_5_diff 1000 --max_3_diff
100 --flnc_coverage 2 -i 0.9 -c 0.9 --max_fuzzy_junction 5’.
Given a significant number of truncated reads in the Nanopore
data, we fine-tuned the parameters with ‘--max_5_diff 500’ and
‘--flnc_coverage 5’ for MDRS dataset.

Due to the high error rate of long-read sequencing, errors near
splice junctions may introduce two types of error: exon–intron
boundary shifts (Supporting Information Fig. S1a) and missing
mini-exons (Fig. S1b). To address these issues, we obtained high-
quality splice junctions (HQJ) by applying REGTOOLS (v.0.5.2;
Feng et al., 2018) on short-read alignment results, and revised
conflicting junctions of full-length isoforms with the following
criteria: (1) For exon–intron boundary shifts defined by long-
read alignment, we revised the boundaries of conflicting junc-
tions if HQJ data showed inconsistent splice junctions. The new
splice junctions must follow canonical splice motifs (GT-AG,
GC-AG, and AT-AC) with flanking exon lengths ranging from
80 to 120% of the original length (Fig. S1c). (2) For exons anno-
tated in HQJ data but absent from long-read alignments, we
incorporated these new exons into the isoform annotation if the
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upstream and downstream splice sites were consistent with the
conflicting junctions (Fig. S1d).

Identification of isoforms based on PU learning

To demonstrate the ability of PU learning to identify reliable
novel isoforms from a vast pool of unlabeled ones, we pooled all
B73 tissue isoforms in the MCP dataset and constructed an iso-
form feature matrix based on 11 isoform-level and 7 splice-junc-
tion-level features for each isoform, which are inspired and
adapted based on the features provided by the SQANTI3 toolkit
(Tardaguila et al., 2018; Table S1; Notes S1). We then categor-
ized all isoforms into three sets: (1) the true-positive dataset,
representing the annotated isoforms with coverage ≥ 2 and mini-
mum splice junction RPKM ≥ 0.05; (2) the true-negative dataset,
consisting of unannotated isoforms with isoform ratio < 0.05 or
those containing novel splice junctions and minimum splice
junction RPKM < 0.05; and (3) the unlabeled dataset containing
the remaining isoforms. Subsequently, we randomly selected
two-thirds of the true positive and true negative samples as train-
ing data, from which positive instances were sampled in incre-
ments of 500, 1000, …, 5009 n (where n is the number of
iterations), with their labels converted to negative. Finally, we cal-
culated F1 scores using five-fold cross-validation for two
positive–negative (PN) learning models, namely random forest
(RF) and gradient boosting (GB), and two PU learning models
(RF-PU, GB-PU). The F1 score is often used as a reliable indica-
tor to evaluate model accuracy through average accuracy and
recall score, and a higher F1 score indicates a better balance of
the model.

To determine the optimal model of five PU learning models,
we randomly selected 80% of PN samples as training sets to eval-
uate the area under the curve (AUC) value of each model using
five-fold cross-validation, and the remaining 20% of the samples
served as test set to assess model robustness (Fig. 1a). During the
training process, we used a bagging strategy by constructing 100
classifiers, where each classifier randomly selected subsets of posi-
tive and unlabeled samples for training to predict the remaining
unlabeled ones, and the final predicted value was obtained by
averaging the predictions of all classifiers (Fig. 1b).

Comparison of different isoform identification methods

We compared PU learning with two other popular isoform iden-
tification tools, SQANTI3 (v.5.0) and FLAIR (v.1.5.1; Tang
et al., 2020). For SQANTI3, the parameter in sqanti_qc.py was
set to ‘--fl_count --coverage --expression’, and two strategies
in sqanti_filter.py were used for isoform identification, namely
SQANTI3-rule (rule-based) and SQANTI3-ml (ML based).
For FLAIR, the parameters for collapse function were set to ‘--
stringent --no_end_adjustment -s 2 --filter ginormous -w 1000’.

Identification of alternative RNA processing events

We identified four types of AS events (SE, IR, A3SS, and
A5SS), and alternative polyadenylation (APA) events using a

hybrid strategy. Briefly, for SE, A3SS, and A5SS events, the
splicing boundaries of both inclusive and exclusive events in
long-read alignment results should be supported by RNA-seq
junctions. For IR events, two types of reads are needed: (1)
reads completely covering the intron and the flanking exons
and (2) reads spliced at the donor and acceptor sites of the
junction in both datasets. SUPPA2 (Trincado et al., 2018), a
well-known short-read-based AS identification tool, was uti-
lized independently with default parameters to validate the AS
events. Regarding the definition of PA sites, the 30 end of
each long-read alignment was defined as the cleavage site and
clustered following a previous approach (Abdel-Ghany
et al., 2016). Briefly, cleavage sites within 24 bp were clustered
into a PA cluster (PAC), with the cleavage site with the high-
est read coverage in each PAC defined as the PA site. An
APA event was considered if multiple PA sites were found
within a gene.

Differential analyses

Isoform expression levels were quantified using short RNA-seq
data for DAS, DEG, and AS-related expression pattern analysis.
DAS analysis was performed using RMATS (v.3.1.0; Shen
et al., 2014) with the absolute value of delta percent spliced in (|
ΔPSI|) ≥ 0.1 and false discovery rate (FDR) ≤ 0.05 as significance
threshold. Read-count matrices were generated with FEATURE-

COUNTS (v.2.0.1; Liao et al., 2014), and DGE analysis was per-
formed using DESEQ2 (v.1.26.0; Love et al., 2014) with
threshold of |log2(fold change)| ≥ 1.5 and FDR ≤ 0.01. Differen-
tial analysis of poly(A) tail length between splicing isoforms was
performed using the Kruskal–Wallis test with a significance
threshold of P ≤ 0.001. ASAS analysis employed IsoPhase (Cup-
cake vPy2_v8.7x; Wang et al., 2020) pipeline to obtain parent-
derived isoform haplotypes, followed by a joint analysis with AS
events to determine ASAS events using chi-squared test with a
threshold of P ≤ 0.001 (Notes S1).

Functional annotation and data visualization

We merged maize Gene Ontology (GO) terms from Ensembl
Plants database and those annotated using INTERPROSCAN
(v.5.50, database version v.88.0; Jones et al., 2014) based on
sequence data, which served as enrichment background in CLUS-

TERPROFILER (v.3.14.0; Yu et al., 2012). InterProScan was also
used to predict protein domain for the target isoforms with an E-
value ≤ 0.001. The translate program in InterProScan was used
for open reading frame (ORF) prediction, with the parameter set
to ‘-find 1’ to identify start and stop codons, and the longest pre-
dicted ORF was selected as the candidate ORF for each isoform.
PHEATMAP (v.1.0.12; Kolde, 2012) was used for cluster analysis
and FACTOMINER (v.2.5; Lê et al., 2008) was used for principal
component analysis (PCA). Mapped reads were visualized using
IGV (v.2.4.19; Thorvaldsd�ottir et al., 2013), while SPLICEGRAPHER

(v.0.2.7; Rogers et al., 2012) and GVIZ (v.1.30.0; Hahne & Iva-
nek, 2016) were employed to display isoform structure and align-
ment details.
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Results

PU learning for reliable identification of novel isoforms

To investigate maize transcriptome and isoform diversity, we first
preprocessed data from 20 PacBio samples and 2 Nanopore sam-
ples, obtaining c. 6.85 million and 5.79 million raw long reads
with average lengths of 2244 base pairs (bp) and 843 bp, respec-
tively (Table S2). Approximately 85.54% of PacBio reads and
78.12% of Nanopore reads were successfully mapped to the
maize reference genome, encompassing over 16 000 genes
(Table S2). To increase the number of isoforms, we then pooled
and collapsed all the reads from three tissues of B73 in MCP
dataset, resulting in a total of 33 224 isoforms (Tables S3, S4).
Of these, 16 871 matched known transcript annotations, while
the remaining ones were categorized as novel.

We employed PU learning, a semi-supervised ML approach,
to reliably identify novel isoforms (Materials and Methods sec-
tion, Fig. 1a,b). For high-quality model construction and evalua-
tion, we screened 13 914 true-positive and 7406 true-negative
isoforms as training data through strict filtering criteria. Using
the training data, we evaluated the performance of RF and GB by
incrementally adding positive samples to unlabeled datasets
under PN and PU training procedures. The F1 scores of all mod-
els were similar when a small number of positive samples were
added to the unlabeled dataset. However, as the number of posi-
tive samples added to the unlabeled dataset increased to approxi-
mately half of the total number of positive samples, the F1 scores
of the PN models declined sharply. The PU models maintained
good performance until > 90% of positive samples were added to
the unlabeled dataset (Fig. 1c), indicating that PU learning can
still accurately identify positive samples ‘hidden’ in unlabeled
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Fig. 1 Reliable identification of novel isoforms
using positive-unlabeled (PU) learning. (a)
Evaluation of five PU bagging models. Feature
extraction and calculation were carried out for all
positive samples and unlabeled samples, and
then, five PU bagging models were trained and
evaluated. Finally, the optimal model was
selected to predict unlabeled samples.
(b) Principle of the PU bagging strategy.
n classifiers were constructed, and within each
classifier, positive samples and unlabeled samples
(regarded as negative) were randomly
subsampled and combined to predict the ‘out-of-
bag’ unlabeled samples. Then, the predicted
scores of each unlabeled sample were averaged
to get its final positive probability. (c) Comparison
of gradient boosting (GB) and random forest (RF)
classifiers in positive–negative (PN) and PU
strategies under different proportions of
mislabeled positive samples. (d) Comparison of
the performance of different PU bagging models
under five cross-validations and the test set.
(e) Comparison of maize isoforms identified by
different methods. (f) Transcript number
distribution for each gene containing novel
isoforms. The zero line represents the genes not
defined in the reference annotation.
(g) Comparison of coverage (left) and the ratio of
isoform (iso.) coverage (cov.) to gene coverage
(right) for novel isoforms identified by three
methods. P values were calculated by Student’s
t-test. Boxplot legend: upper and lower
horizontal lines indicated the 75th and 25th

percentiles, respectively. The central bold line and
the whiskers indicated the median and minimum–
maximum values.
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data even with limited positive samples, which is consistent with
previous researches (Zheng et al., 2019; Liu et al., 2022). We
further evaluated five PU learning models based on GB, RF, deci-
sion tree (DT), naive Bayes (NB), and support vector machine
(SVM), with 80% of the training data allocated for cross-
validation and 20% for testing. Among the five models, the GB-
based model exhibited the best performance with AUC exceeding
0.98 on both cross-validation and testing data, followed by RF
and DT (Fig. 1d). Consequently, we selected the GB-PU as the
optimal model, resulting in a total of 19 851 reliable isoforms for
B73 in MCP dataset, including 16 871 annotated and 2980
novel isoforms (Tables S3, S4).

We next compared GB-PU with two other long-read-based
isoform identification applications, namely SQANTI3 and
FLAIR (Materials and Methods section). In general, both
SQANTI3 methods identified a much higher number of novel
isoforms than either FLAIR or GB-PU, whereas GB-PU detected
more annotated isoforms and fewer novel ones compared with
FLAIR, despite a similar number of isoforms (Fig. 1e). Addition-
ally, almost 99.8% of the isoforms identified by GB-PU were also
captured by other three methods, with only 44 isoforms being
unique to GB-PU (Fig. 1e). Although the novel isoforms identi-
fied by GB-PU were primarily located within genes that were
either missing or represented as single-transcript genes in the
reference annotation (Figs 1f, S2a,b), their coverage and ratio of
isoform coverage to gene coverage were significantly higher than
those identified by SQANTI3 and FLAIR (Figs 1g, S2c,d). The
similar quantitative pattern was also observed by using short
RNA-seq data, where GB-PU exhibited higher transcripts per
million (TPM) values (Fig. S3a) and stronger correlation
(Fig. S3b) compared with SQANTI3 and FLAIR. The higher
level of expression and correlation coefficient indicates that GP-
PU may provide more reliable results for identifying novel iso-
forms. Additionally, GP-PU requires less memory and CPU
resources than FLARE and SQANTI3, though it takes more time
to execute. (Fig. S4; Notes S1). In short, the GB-PU learning
method proposed in this study may be a more suitable choice for
the detection of major novel isoforms in plants.

To gain further insights into the biological functions of the
novel isoforms, we identified tissue-specific isoforms in embryo,
endosperm, and root in the MCP dataset, resulting 1348, 684,
and 1084 isoforms, respectively (Fig. S5a). GO enrichment ana-
lysis of the major tissue-specific novel isoforms (coverage ≥ 5,
ratio of isoform coverage to gene coverage ≥ 0.5) revealed distinct
functional enrichment patterns for each tissue (Fig. S5c), which
was also observed in the MDRS dataset (Fig. S5b,d). Notably,
the MIP dataset showed a substantial overlap among the novel
isoforms identified in different maize lines (Fig. S5e). We then
compared the expression patterns of genes corresponding to the
overlapping isoforms based on the expression profile of 23 maize
tissues collected from the MaizeGDB database (Walley
et al., 2016). Interestingly, a large proportion of these genes were
highly expressed in leaf (Fig. S5f), consistent with the tissue
source of the MIP dataset. In summary, the novel isoforms iden-
tified by GB-PU displayed relatively consistent patterns within
the same tissue, while exhibiting significant tissue-specific

expression and functional divergence among different tissues,
highlighting the reliability of novel isoforms identified by PU
learning.

Characterization of AS events

As Illumina transcriptome sequencing (RNA-Seq) has been pro-
ven efficient in defining the exon–intron structure at a local view,
we used it as an independent control to assess the accuracy of
long-read assay in delineating these events. In overall junction
view, the splice junctions defined by filtered isoforms were largely
supported by the RNA-Seq data from the same sample, with con-
sistency rates ranging from 91.22 to 98.64% (Fig. 2a), indicating
agreement between the two platforms in defining splicing events.
Importantly, after PU filtration and junction refinement, we
noticed that the consistency rate of junctions in each sample
increased by 1–5% (Fig. 2a) compared with the raw mapping
result. In the full-length isoform view, we also observed an
increase in support ratio of all junctions per isoform for all sam-
ples (Fig. 2b), highlighting the necessity of the optimization stra-
tegies in elevating the quality of isoform structures.

Based on the optimized high-quality isoforms, we summarized
the number of alternative RNA processing events identified in
maize B73 from all three datasets, including IR, SE, alternative 50

or 30 splice site (A5SS or A3SS) and APA. In total, 4834 AS
events were identified, of which 593 (12.3%) were novel accord-
ing to the reference annotation (Fig. 2c). As observed in previous
studies (Chaudhary et al., 2019), the dominant AS event found
in this study was IR, constituting 68.8% of the events, followed
by A3SS (14.0%), A5SS (10.1%), and SE (7.1%). In strong sup-
port of the reliability of these AS events, the cis features near the
events agreed with a priori knowledge of known regulatory
mechanisms (Shang et al., 2017). Briefly, > 99% of the splice
junctions were associated with a canonical GT-AG or GC-AG
motif, even for novel IR events, indicating that these IR events
may not represent random readout of nascent transcripts that
have yet to undergo splicing at a particular intron. To further
evaluate the quality of the identified AS events, we employed
SUPPA2 for independent verification. Robust support for both
known and novel A3SS, A5SS, and SE events by SUPPA2 was
observed, with overlap rates ranging from 85 to 97% (Fig. S6a).
Although only one-third of IR events could be validated by
SUPPA2, the PSI score for all AS events fell within a reasonable
range between 0.1 and 0.9 (Fig. S6b), suggesting generally good
splicing levels for all events (Tapial et al., 2017). These results
highlight the limitations of traditional short-read-based AS analy-
sis in accurately identifying common IR events in plants, empha-
sizing the importance of long-read-based tool optimized for plant
gene splicing characteristics.

We also detected 3267 APA events, of which 1858 (56.9%)
were novel events contributed by 6089 novel polyadenylation
(PA) sites (Fig. 2c), suggesting that a large proportion of novel
PA sites may originate from single-isoform genes. To evaluate the
reliability of PA identification, we further calculated the distances
between PA sites and the transcription termination sites (TTS) of
the nearest genes (Fig. 2c). A distribution of distances with a
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median score near zero and a modest variance indicated that most
of the PA sites were reliable. In line with this verification, the fre-
quencies of the top six poly(A) signals within 50 bp upstream of
the novel PA sites were consistent with known patterns (Proud-
foot, 2011), with AATAAA being the most dominant signal
(Fig. 2c). In this regard, the isoform optimization strategy used
here provided a direct and efficient approach to identifying AS
and APA events, laying a solid foundation for subsequent func-
tional AS analysis.

Uncovering maize tissue splicing patterns and their
relationship with gene expression

To explore splicing differences among tissues of maize, we per-
formed a paired DAS analysis on different tissues of B73 in MCP
dataset, and identified 200, 278, and 300 differentially spliced
genes (DSGs) in the embryo vs endosperm, endosperm vs root,
and embryo vs root comparison groups, respectively (Fig. 3a;
Table S5). The numbers of total DSGs (Fig. 3a) and tissue-
specific DSGs (Fig. 3b) in endosperm vs root and embryo vs root

comparisons were higher than the other one, with the proportion
of DSGs containing novel AS events (Fig. 3a) also exceeded 12%
of the background novel splicing events (Fig. 2c). GO enrich-
ment analysis further showed that DSGs in different comparison
groups were functionally different (Fig. S7), indicating that the
splicing patterns of genes may be more divergent among tissues
that possess greater morphological and functional differences.

To further investigate the relationship between AS and expres-
sion levels of genes, we analyzed differential gene expression in
the three comparisons. The number of differentially expressed
genes (DEGs) in the embryo vs endosperm comparison (6501)
was significantly lower than that in endosperm vs root (10 939)
and embryo vs root (10 079; Table S4), consistent with the trend
for DSGs. Notably, only a small number of genes were both
DSGs and DEGs, with 34 (17.0%), 68 (24.5%), and 87
(29.0%) genes identified respectively (Fig. 3c; Table S5), suggest-
ing significant functional differences between genes affected by
AS and transcriptional regulation. To gain a better understanding
of these differences, we performed PCAs on DEGs using TPM
values and on DAS events using PSI values, where TPM and PSI

Events Annotated Novel Splicing motifs

SE 316 27

A5SS 438 48

A3SS 615 62

IR 2872 456

APA 1409 1858

PA 10 678 6089

AAA
AAA

AAA

GT AG GC-GC-AG OtherGT- -AGSplicing site:

96.1%

99.7%
99.8%
96.6%
96.8%
99.7%
98.3%

Poly(A) Signal
−1 −0.5 0 0.5 1

Distance to TTS (kbp)

0.25 0.50 0.75 1.00
Long reads
proportion 0

(a)

(c)

(b)
MCP MIP MDRS

B73
 em

b

B73
 en

do

B73
 ro

ot

Ki11
 em

b

Ki11
 en

do

Ki11
 ro

ot

B73
xK

i11
 em

b

B73
xK

i11
 en

do

B73
xK

i11
 ro

ot

Ki11
xB

73
 em

b

Ki11
xB

73
 en

do

Ki11
xB

73
 ro

ot B73
Mo1

7

Cha
ng

72

Hua
ng

za
o4

Zhe
ng

58

PH20
7

PH4C
V

PH6W
C

Kern
el

See
dli

ng
0.80

0.85

0.90

0.95

1.00

R
at

io

0

20

40

60

0 20 40 60
Junction count of long reads

After correction

Before correction After correction

0

20

40

60

0 20 40 60
Junction count of long reads

Before correction

Su
pp

or
te

d 
ju

nc
tio

n 
co

un
t

Fig. 2 Genome-wide identification of maize alternative splicing (AS) events. (a) Proportion of long-read splicing junctions supported by short-read RNA-
Seq data in each maize dataset before and after positive-unlabeled (PU) filtration and junction refinement. (b) Proportion of long-read splicing junctions
supported by short-read RNA-seq data for each isoform before and after PU filtration and junction refinement. For each isoform, the number of splice
junctions (x-axis) and the numbers of junctions supported by RNA-Seq reads (y-axis) were counted. The density distribution of reads was then summarized
and shown in tile form in the figure, with the density indicated by color ranging from gray to red. (c) Left panel: Statistical and characteristic evaluation of
genome-wide AS and alternative polyadenylation (APA) events in maize. For the four categories of AS events, the frequencies of different splicing motifs
are shown in bar plots in different colors according to the legend below. For APA events, the distances between PA sites and transcription termination sites
(TTS) are summarized in the boxplot. Right panel: Frequencies of the top six poly(a) signals located within 50 bp upstream of novel PA sites.
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values were quantified from RNA-Seq data. The results showed
that the clustering patterns based on gene expression and IR
events effectively differentiate the three tissues, whereas non-IR
events could not clearly distinguish between embryo and endo-
sperm (Fig. 3d). This suggests that IR events, similar to gene
expression, are more representative than other AS types in reflect-
ing plant tissue specificity.

Consequently, we asked whether there is a correlation between
IR and the expression level of isoforms. We compared the expres-
sion of isoforms involved in IR events with those not involved in

any AS events (non-AS). The expression levels of intron-inclusive
isoforms from IR events were significantly lower than other iso-
forms, while no obvious expression differences were observed
between the intron-exclusive isoforms in IR events and the non-
AS isoforms (Fig. 3e). Considering that IR events often involve
the retention of long introns, which are more likely to introduce
the premature termination codons (PTCs; Pimentel et al., 2016),
we further investigated the relationship between isoform expres-
sion, IR events and PTCs. We determined that the expression
levels of isoforms with PTCs were significantly lower than those
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Fig. 3 Alternative splicing (AS) and gene expression patterns in maize maize cross panel (MCP) dataset. (a) Number of differentially spliced genes (DSGs) in
each comparison group. (b) Venn diagram of DSGs between comparison groups. (c) Comparison of DSGs and differentially expressed genes (DEGs).
(d) PCAs using gene expression and AS patterns. From left to right are the first two principal components (PCs) of global gene expression level, intron
retention (IR), and nonintron retention AS events, respectively. (e) Expression levels of isoforms involved in IR events. Inc(IR) represents isoforms with
retained introns in IR events, Exc(IR) represents isoforms without retained introns in IR events and Non-AS represents other isoforms without AS events. The
significance of ’****’ from left to right are P < 2.22e–16, P = 4.1e–11 and P < 2.22e–16. (f) Effects of IR events and premature termination codons (PTCs) on
isoform expression. PTC(+) and PTC(�) represent isoforms with and without PTCs, respectively; IR(+) and IR(�) represent isoforms with and without
retained introns, respectively. The Kruskal–Wallis test was used to calculate the significance of differences between groups. Error bar represents the SD .
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without PTCs, whereas the expression levels of isoforms contain-
ing both retained introns and PTCs were the lowest (Fig. 3f),
indicating that retained introns may not only have a causal effect
on premature termination, but also contribute a superposed
effect to the reduction of isoform expression.

Splicing isoform-specific poly(A) tail length profiling

Polyadenylation, like AS, is a post-transcriptional processing
mechanism and results in the addition of a long sequence of ade-
nosines to the 30 end of mRNAs (Lima et al., 2017), which plays
a crucial role in mRNA stability and translation efficiency (Sub-
telny et al., 2014). To investigate the relationship between
poly(A) tail length and AS in maize, we plotted poly(A) tail
length distributions of isoforms involved in AS events using the
MDRS dataset. We observed a longer median poly(A) tail length
in the intron-exclusive isoform compared with the intron-exclusive
isoforms, especially for IR events (Fig. 4a). One example involves
IAA28 (Aux/IAA-transcription factor 28, Zm00001d037774;
Fig. 4b), which encodes a known auxin transcription factor. The
intron-retained isoform of IAA28 had a significantly longer
poly(A) tail than the intron-exclusive isoform. Moreover, the
intron-retained isoform is predicted to harbor a truncated Aux/-
IAA domain, implying that the retained intron introduces a PTC
resulting in the premature termination of translation.

In IR events, long alternatively retained introns are often
thought to change the length of the ORF or untranslated region
(UTR) in isoforms (Jacob & Smith, 2017). We then compared
the ORF and 30 UTR length distributions of isoforms pairs
involved in AS events and observed a distinct pattern in IR events
that intron-inclusive isoforms exhibited shorter ORF and longer
30 UTR compared with those without introns (Fig. 4c), whereas
no differences were found for other AS types (Fig. S8). This con-
trast was unexpected, as the inclusive isoforms are typically
assumed to introduce exon fragments, which would increase
ORF length. In fact, the retained introns were more likely to
introduce PTCs, leading to frameshift mutations resulting in
shorter ORFs and longer 30 UTRs (Fig. 4d). After expanding the
scope of our analysis to all isoforms, we observed a significant
positive correlation between poly(A) tail length and 30 UTR
length (R = 0.25, P < 2.2e�16), while ORF length was not that
case (Fig. 4e), emphasizing the importance of the 30 UTR in
shaping the extent of poly(A) tails.

Nevertheless, intron-retained isoforms tended to harbor longer
poly(A) tails and exhibit relatively low levels of long-read abun-
dance (Fig. 4f), consistent with our quantitative analysis of short-
read RNA-seq data (Fig. 3e). To further explore the relationship
between expression level and poly(A) tail length in maize, we
plotted the median tail lengths of three isoform groups categor-
ized by their relative abundances (Fig. 4g). As expected, most
highly expressed isoforms had short tails, whereas the least abun-
dant isoforms had longer tails. When we binned isoforms accord-
ing to normalized median poly(A) tail lengths (Fig. 4h), we
observed an inverse correlation between poly(A) length and iso-
form abundance, in which the isoforms with shorter poly(A) tails
(40–120 nt) were more abundant than those with longer poly(A)

tails (> 120 nt). The only exception was the group with a median
poly(A) tail length shorter than 40 nt, where the poly(A) tails of
these isoforms may be too short to accommodate poly(A) binding
protein, potentially leading to their degradation (Passmore &
Coller, 2021).

We also observed the same negative correlation between
poly(A) tail length and isoform abundance in different maize tis-
sues (Fig. 4i,j), where the median poly(A) tail length of isoforms
in kernel was substantially higher than that in aboveground seed-
ling tissues, whereas the isoform abundance showed the opposite
pattern. Moreover, c. 80% of well-expressed isoforms (coverage
≥ 20) had median tail lengths ranging between 54 and 105 nt
(Fig. S9a). To explore whether there were functional classes of
isoforms associated with longer or shorter poly(A) tails, we classi-
fied the deciles of isoforms into two groups with short tails (med-
ian length ≤ 54 nt, n = 1562) and long tails (median length ≥
105 nt, n = 1719). A subsequent GO enrichment analysis within
each isoform category showed distinct functional and tissue speci-
ficity in kernel and seedling tissues (Fig. S9b). Interestingly, the
median poly(A) tail length of 2905 well-expressed (coverage
≥ 20) genes showed a shorter distribution in seedlings than that
in kernel (Fig. S9c), suggesting the poly(A) tail length of different
transcripts within a given gene in maize may also undergo
dynamic changes across tissues or development stages, as
observed in zebrafish (Subtelny et al., 2014).

Allele-specific alternative splicing analysis in maize
hybrid line

The MCP dataset contains transcriptomes of B73, Ki11, and
their reciprocal hybrid offspring B739 Ki11, enabling us to trace
the parental origin of each isoform in B739 Ki11 and perform
systematic ASAS analysis. By employing the ASAS discovery
pipeline (Materials and Methods section), we identified 41 ASAS
genes in hybrid lines (Table S6), covering 505 single-nucleotide
variants with around one-third being missense variants
(Fig. S10a). Of the 41 ASAS genes, 29 contained more than one
missense variant (Fig. S10b) and functional analysis showed their
enrichment in GO terms related to signal transduction and DNA
biosynthetic process (Fig. S10c), suggesting that the ASAS genes
may play an important role in maintaining fundamental cellular
activities in the hybrid offspring.

AUXIN RESPONSE FACTOR 28 (ARF28; Zm00001d023659),
as one of the representative ASAS genes, plays a crucial role in regu-
lating plant growth and development (Xing et al., 2011). ARF28
has seven main isoforms, with PB.26476.1, PB.26476.5, and
PB.26476.6 being the isoforms predominantly expressed in
B739Ki11 (Fig. 5a). Genotype analysis revealed that PB.26476.1
and PB.26476.6 belonged to the Ki11 haplotype, and PB.26476.5
represented the B73 haplotype. The main difference between the
two parental haplotypes lies in the retention of intron 14 that the
intron is excluded in Ki11 but included in B73 (Fig. 5a). Another
IR event at intron 12 also contributed to the difference between
PB.26476.1 and PB.26476.6 in the Ki11 haplotype. The retention
of intron 12 in PB.26476.6 introduces a PTC, leading to the
absence of the Aux/IAA domain (Fig. 5b). Notably, even though
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PB.26476.5 retained an intron at its 30 end compared with the refer-
ence isoform T007, both isoforms were predicted to contain the
same putative domains (Fig. 5b), suggesting polymorphism of Aux/-
IAA domains in different functional isoforms of ARF28.

ARF28 also showed similar haplotype patterns in different
maize lines in the MIP dataset. Specifically, ARF28 in Zheng58

was consistent with the B73 haplotype, whereas the alternative
haplotype was present in Mo17 and Chang7-2 (Fig. 5c). Nota-
bly, the haplotype of ARF28 in Mo17 and Chang7-2 differ from
Ki11 only by one synonymous mutation (GCG- >GCA,
Ala- > Ala) located in the first exon (Fig. 5d), indicating that
Mo17, Chang7-2 and Ki11 have the same ARF28 haplotype in a
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Fig. 4 Analysis of poly(A) tail length of splicing isoforms in maize. (a) Median poly(A) tail length distribution of isoforms involved in each alternative splicing
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broad sense. Similar to B739 Ki11, B739Mo17, and
Zheng589 Chang7-2 are also well-known maize hybrid combi-
nations, suggesting that the ASAS mechanism of ARF28 may be
conserved in different hybridization tests. Similar ASAS patterns
were also detected in another gene Zm00001d020461 (Fig. S11).

The implementation of iFLAS toolkit to facilitate plant
full-length AS analysis

We integrated our functional analysis pipeline with multiple
state-of-the-art application tools to implement a ‘one-stop’ full-
length AS analysis toolkit called iFLAS. iFLAS consists of the fol-
lowing four functional modules, with the goal of furnishing a
standardized and functionally diverse analytical framework for
long-read-based AS analysis (Fig. 6; Table S7). (1) Basic data
processing workflow: the module takes the raw transcriptome
data from different sequencing platforms as inputs and performs
optimized standard data analysis pipelines, such as raw data pre-
processing, read mapping, collapsing, and junction refinement.
(2) Isoform and AS identification: we employ the PU learning
algorithm to accurately identify novel isoforms, and then classify

four major AS and APA events based on a hybrid sequencing ana-
lysis strategy. (3) Functional AS analyses: this module covers
DAS event identification, AS-related differential poly(A) tail
length, allele-specific and GO functional enrichment analyses,
aiming to assist downstream functional analysis of AS for differ-
ent target applications. (4) Result visualization: iFLAS offers
visual displays of isoform structures, statistical summaries of AS
events, and HTML reports to improve the readability of complex
analytical results.

We comprehensively evaluated iFLAS with three real maize
datasets, and confirmed its effectiveness and applicability for dif-
ferent AS applications in maize. We also processed the full-length
transcriptomes of other four plants: Arabidopsis, rice, wheat, and
potato (Notes S1). By comparing long- and short-read datasets
across multiple plant species, iFLAS was shown to construct
high-quality isoforms with high read coverage, expression levels,
and correlation between datasets (Fig. S12). Notably, iFLAS not
only consistently identifies AS events aligned with established
short-read tools, but also captures challenging event types such as
IR and APA (Fig. S13), demonstrating its wide application across
various plant species (Tables S8, S9). iFLAS is full-featured and
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Fig. 5 Allele-specific alternative splicing (ASAS) pattern for ARF28. (a) Mapping results of the long-read data for B739 Ki11. The four tracks from top to
bottom are: ARF28 gene model, long-read coverage of ARF28, collapsed isoform structures, and long-read mapping results for the Ki11 haplotype, as well
as collapsed isoform structures and long-read mapping results for the B73 haplotype. (b) Putative PFAM domains of different isoforms in ARF28.
(c) Coverage of long-read data from exon 12 to exon 15 of ARF28 in four maize inbred lines. (d) Haplotypes of ARF28 in five maize inbred lines. SNPs are
shown in cyan (A), blue (T), orange (C) and red (G).
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easy-to-operate, which can be accessed from https://github.
com/CrazyHsu/iFLAS.

Discussion

In this study, we developed iFLAS to bridge the gap between
long-read sequencing techniques and in-depth plant AS study
(Amarasinghe et al., 2020). iFLAS draws on the functional inte-
gration of other long-read based AS tools, such as NanoASPipe
(Liu et al., 2017) and NanoTrans (Wang et al., 2022) for pipeline
construction, SQANTI3 and FLAIR for quality control and iso-
form classification, TAPPAS (de la Fuente et al., 2020) and
ISOTOOLS (Lienhard et al., 2023) for functional analysis of AS
and APA, FLEP-Seq (Long et al., 2021) for poly(A) length speci-
fic AS analysis, and provided more comprehensive functions for
plant research (Table 1). One notable feature of iFLAS is the
utilization of PU learning to reliably identify novel isoforms,

addressing the challenge of high sequence noise encountered with
long-read sequencing technologies. PU learning does not rely on
labeled negative samples, making it a powerful tool to accurately
classify numerous unknown samples based solely on positive sam-
ples, and has proven successful in various life science applications
(Lan et al., 2017; Kolosov et al., 2021).

Integrated full-length AS analysis implements diverse analysis
pipelines, enabling accurate AS identification and providing the
potential for multi-dimensional functional elucidation of AS from
an isoform-level perspective. By using iFLAS, we systematically
explored the AS patterns in maize using three sets of full-length
transcriptome sequencing data collected for different research pur-
poses. First, we identified a notably lower number of AS events
than previously reported (Mei et al., 2017; Q. Chen et al., 2018),
which can be attributed to our use of PU learning and a hybrid AS
defining strategy, ensuring reliable and conservative AS event iden-
tification. The finding is also supported by the fact that 98% of

Fig. 6 Workflow and functional modules of the
integrated full-length alternative splicing analysis
(iFLAS) toolkit. iFLAS supports① transcriptome
data from PacBio, Nanopore, and Illumina
platforms,② performs basic data processing
(including data preprocessing, mapping,
collapsing, and refinement), isoform and
alternative splicing (AS) identification,③
functional AS analyses (including DAS, ASAS,
AS-related differential poly(A) tails, and④ GO
enrichment analyses) and result visualization.
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the splicing sites are canonical GT-AG motifs (Fig. 2c). Second,
despite a weak correlation between DSGs and DEGs (Fig. 3c), our
PCA results showed that IR events, like DEGs, were still able to
effectively distinguish different tissues (Fig. 3d). Isoforms contain-
ing retained introns displayed significantly lower expression level
than other isoforms (Fig. 3e,f), implying that genes with PTC may
undergo IR to regulate isoform expression in different maize tis-
sues, thereby mitigating the effect of PTCs.

As to poly(A) tail analysis, we found that variations in the
poly(A) tail length of isoforms may also have functional implica-
tions in maize. On the one hand, poly(A) tail length closely corre-
lates with AS events (Fig. 4a), particularly with IR events,
potentially resulting in functional divergence between isoforms of

the same gene (Fig. 4b). Despite IR’s potential to introduce long-
range alternative exon changes affecting ORF and UTR lengths,
we observed a positive correlation between isoform poly(A) tail
length and 30 UTR length in this study, with no significant correla-
tion found with ORF length (Fig. 4e), providing a new insight
into the regulatory role of the 30 UTR in poly(A) tail dynamics.
On the other hand, short-tailed isoform in maize showing higher
expression levels than long-tailed isoforms (Fig. 4g,h), while iso-
forms with different poly(A) tail lengths exhibited distinct func-
tional trends in maize kernel and seedling. The similar correlations
have also been observed in other studies (Chang et al., 2014; Lima
et al., 2017; Liu et al., 2019), suggesting that poly(A) tail length
may play an important role in many aspects of transcript lifecycle.

Table 1 Functional modules of iFLAS compared with other long-read-based alternative splicing (AS) tools.

NanoASPipe (Liu
et al., 2017)

Flair (Tang
et al., 2020)

tappAS (de la
Fuente et al., 2020)

FLEP-seq (Long
et al., 2021)

NanoTrans (Wang
et al., 2022)

IsoTools (Lienhard
et al., 2023) iFLAS

Supported data types
PacBio (raw bam files) ✓
PacBio (processed
FASTA/Q files)

✓ ✓ ✓

Nanopore (raw fast5
files)

✓ ✓

Nanopore (processed
FASTA/Q files)

✓ ✓ ✓ ✓ ✓

Processed BAM files ✓
Processing
Basecalling ✓ ✓
Alignment ✓ ✓ ✓ ✓ ✓
Error correction and
polishing

✓ ✓ ✓ ✓ ✓ ✓

Generating consensus
sequence

✓ ✓ ✓ ✓

Isoform detection ✓ ✓ ✓ ✓ ✓
Isoform quality filtering ✓ ✓ ✓ ✓ ✓
AS events
identification

✓ ✓ ✓ ✓ ✓ ✓ ✓

APA events
identification

✓ ✓ ✓

Functional exploration
Differential AS events
analysis

✓ ✓ ✓ ✓ ✓

Poly(A) length specific
AS analysis

✓ ✓

Allele-specific AS
Analysis

✓ ✓

GO enrichment
analysis

✓ ✓

Functional evaluation
of AS

✓ ✓

Visualization
GO enrichment ✓ ✓
AS events visualization ✓ ✓ ✓ ✓ ✓
Summary statistics ✓ ✓ ✓ ✓ ✓
Software type
Pipeline ✓ ✓ ✓ ✓ ✓
Package ✓
Standalone application ✓
General LR-based AS
analysis tools

✓ ✓ ✓

Publish time 2017 2019 2020 2021 2022 2023
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Furthermore, since AS can be affected by cis-acting sequence
polymorphisms, ASAS analysis helps the identification of spli-
cing differences derived from two haplotypes within a hybrid
individual (Demirdjian et al., 2020) and facilitates the discov-
ery of genes with breeding value. In this study, we found that
ARF28 in B739Ki11 expressed two different parent-derived
isoforms with distinct Aux/IAA domains, and the same pattern
was also observed in two other well-known maize hybrid com-
binations, namely B739Mo17 and Zheng589Chang7-2
(Fig. 5). Another ASAS gene, Zm00001d020461 (Fig. S11),
located within a grain weight and width related quantitative
trait locus called qKW7 (Li et al., 2016), was also found to
express different isoforms in multiple maize inbred lines.
Given that ARF28 and Zm00001d020461 are known to play
an important role in growth and development processes, our
findings highlight their promising potential value in breeding
programs.

While iFLAS provides new insights into isoform identification
and functional analysis from the perspective of full-length tran-
scriptome, the integration of multiple tools may reduce its effi-
ciency. Additionally, we did not consider the combined
correlation between AS and APA in the PA site identification
process, as well as the correlation between AS and allele-specific
expression in the ASAS identification process, despite their corre-
lation being extensively discussed (Park et al., 2018; Blake &
Lynch, 2021). Since iFLAS is still in development, we are dedi-
cated to optimizing its analytical processes, improving its opera-
tional efficiency, and enhancing the comprehensiveness of its
functional modules. For instance, RNA methylation analysis
could be introduced to further explore potential correlations
between AS and epigenetic modifications.

In summary, iFLAS offers a ‘one-stop’ solution for the identifi-
cation and functional study of AS events in plants from a full-
length perspective. We expect that it will serve as an efficient
resource for plant AS research and further facilitate the explora-
tion of functional genes and the improvement of important agro-
nomic traits such as stress resistance, quality, and yield.
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