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MRBIGR:Aversatile toolbox forgenetic regulation
inference from population-scale multi-omics data
Dear Editor,

Genome-wide association studies (GWAS) are pivotal genetic

methodologies for identifying genomic regions associated with

specific traits in crops. However, they often face challenges

with complex traits that involve multiple quantitative trait

loci and environmental factors (Liu and Yan, 2019; Tam et al.,

2019). Despite recent advancements in GWAS tools such as

GAPIT3 (Tang et al., 2016) and HAPPI GWAS (Slaten et al.,

2020), which have facilitated the exploration of relationships

between molecular and phenotypic traits, these tools still

adhere to conventional GWAS designs and exhibit limited

capabilities in establishing associations across multi-omics

layers.

Mendelian randomization (MR) analysis, initially developed for

causal inference in epidemiology, leverages genetic variation as

instrumental variables to estimate the causal impact of environ-

mental exposures on phenotypic outcomes (Akiyama, 2021).

MR has been successfully applied in both human and plant

sciences to unravel complex regulatory networks (Zhu et al.,

2016; Liu et al., 2020), overcoming some limitations of

traditional GWAS methods. Integrating MR with multi-omics as-

sociation analysis could provide new insights into identifying

key genes affecting traits and dissecting complex genetic regula-

tory networks in crops. However, existing tools lack a unified

framework that combines multi-omics association analysis with

MR-based causal inference, which limits the comprehensive

exploration of complex datasets.

To address this gap, we introduce MRBIGR (MR-based Infer-

ence of Genetic Regulation), a versatile toolbox designed for

genetic regulation inference in population-scale multi-omics

data. MRBIGR features a user-friendly graphical user interface

(GUI) that integrates key functionalities throughout the entire

GWAS analysis and MR strategy (Figure 1; Supplemental

Table 1; supplemental notes). This package provides a

comprehensive solution from raw data processing to causal

interpretation and is freely accessible at https://gitee.com/

crazyhsu/MRBIGR.

To demonstrate the application of MRBIGR in population-scale

multi-omics data analysis, we utilized a maize dataset from

the Maizego database. This dataset includes genotypic

data for 527 maize inbred lines and transcriptomic and metabo-

lomic data from kernels of 368 inbred lines sampled 15 days

after pollination, alongside phenotypic data for nine kernel-

related agronomic traits (Supplemental Table 2; supplemental

materials).

In processing the genotypic data, we employed the ‘geno’ mod-

ule of MRBIGR to filter out SNPs with a missing rate greater than
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10% and a minor-allele frequency below 5%, retaining 2 040 959

SNPs. To enhance computational efficiency and minimize

redundancy, we further compressed the SNP density using a link-

age-disequilibrium-based strategy (r2 R 0.7, window size of 125

kb), resulting in the selection of 381 013 tag SNPs. Comparisons

of phylogenetic trees and principal-component analysis between

the filtered and tag SNPs indicated that using tag SNPs signifi-

cantly reduced computation time while preserving the consis-

tency of population structure (Supplemental Figure 1). This

demonstrates the efficacy of MRBIGR’s SNP pruning for popula-

tion genetic studies.
Of the metabolites analyzed, only 102 were annotated

(Supplemental Table 3). We performed clustering analysis and

principal-component analyses on their abundances, revealing

that temperate maize lines contain a significantly higher

flavonoid content compared to tropical maize lines

(Supplemental Figure 2). We then used the ‘gwas’ module to

analyze the abundance of these 102 metabolites (supplemental

methods), the expression levels of all genes, and nine

agronomic traits. Our results revealed significant association for

14 flavonoid metabolites within a region around 48 Mb on

chromosome 1 (Supplemental Figures 3A and 3B). Interestingly,

this region includes the Pericarp Color1 (P1) gene, a known regu-

lator of the flavonoid metabolic pathway (Liu et al., 2017). The

GWAS signal for P1 co-localizes with those of the flavonoid me-

tabolites, suggesting that P1 plays a crucial role in regulating

flavonoid content (Supplemental Figure 3B). However, in the

GWAS analysis of agronomic traits, only kernel number per

row displayed a significant association region (Supplemental

Figure 3C), which did not co-localize with any GWAS signals of

annotated metabolites, suggesting that GWAS analysis of agro-

nomic traits alone may not effectively reveal the underlying regu-

latory networks.
To determine whether MR can reveal the causal relationships be-

tween genes and metabolites, we used the ‘mr’ module to analyze

the P1 gene and 102 annotated metabolites (supplemental

methods). The analysis revealed that all statistically significant

metabolites were flavonoids (Supplemental Figure 4A), which

exhibited strong MR effects (Supplemental Figure 4B). Further

analysis of the regulatory relationships between P1 and other

genes, using previously obtained GWAS results, identified 9520

significantly associated loci (SALs) linked to 8929 genes, including

P1. A subsequent pairwise reciprocalMRanalysis betweenP1 and

each of the 8928 genes (supplemental methods) identified 16

genes significantly associated with P1 (Supplemental Table 4;

Supplemental Figure 4C). Gene Ontology enrichment analysis of

these 16 genes using the ‘go’ module revealed significant

enrichment in pathways related to flavonoid and anthocyanin

metabolism (Supplemental Figure 5A). Building on the

pairwise MR results among P1, the 16 genes significantly
5 ª 2024 The Authors. Published by Elsevier Inc. on behalf of
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Figure 1. Functional modules of MRBIGR.
MRBIGR features seven modules for genotypic data analysis, phenotypic data analysis, GWAS and SAL analysis, MR analysis, MR-based network

analysis, Gene Ontology (GO) enrichment analysis, and data visualization. The software’s graphical user interface (GUI) simplifies data analysis by

enabling users to intuitively select modules and efficiently set parameters.
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associated with P1, and genes in the flavonoid metabolism

pathway (totaling 62 genes), we constructed a causal network

comprising 21 flavonoid-related genes using the ‘net’ module,

identifying P1 as a hub gene (Supplemental Figure 5B).

Additionally, to evaluate the ability of MR analysis in dissecting

the contributions of genes and metabolites to agronomic traits,

we performed MR analysis using the quantitative profiles of P1

and flavonoid metabolites as exposure variables for the nine

agronomic traits (supplemental methods). The results indicated
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that P1 and flavonoid metabolites had significant positive

effects on yield traits, suchas kernel number per rowand 100-grain

weight (100GW), with 100GW showing statistical significance

(Supplemental Figure 6). This suggests thatP1-regulated flavonoid

biosynthesis may be involved in grain yield, potentially influencing

100GW.

To investigate the impact of P1 on flavonoid accumulation during

domestication, we employed the ‘plot’ module to analyze
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nucleotide diversity within a 10-kb window upstream of the P1

gene. This analysis revealed significantly lower diversity in trop-

ical maize compared to temperate maize (Supplemental

Figure 7A). Further analysis of how the genotype at the leading

SNP for P1 affects its expression showed that individuals with

the AA genotype consistently exhibit significantly higher P1

expression levels in both temperate (TEMP) and tropical (TST)

maize lines (Supplemental Figure 6B). However, among tropical

maize accessions, significantly fewer lines carried the minor

allele (AA) compared to the major allele (GG) (Supplemental

Figure 7C), indicating that the AA genotype may have

undergone selection during domestication, leading to a

reduction in its frequency (Supplemental Figure 7A). Notably,

several target genes of P1, such as C2, CGT1, UGT1, PR1, and

FNS1 (Supplemental Table 4), exhibited similar expression

patterns to P1 (Supplemental Figure 7D), further supporting the

hypothesis that the minor allele AA is critical for the regulation

of flavonoid metabolism.

In summary, we developed MRBIGR, a versatile toolbox that

bridges population-scale multi-omics association analysis

with genetic regulation inference. A key advantage of

MRBIGR is its integration of multiple efficient tools within a

user-friendly graphical user interface (GUI), streamlining the

analysis of genotypic, phenotypic, and GWAS data

(Supplemental Figure 8; Supplemental Tables 1 and 5;

supplemental notes). MRBIGR also incorporates MR methods

to enable directional causal inference from multi-omics data,

providing more precise insights into regulatory networks across

different omics layers compared to traditional approaches such

as mutual relationship or co-expression analyses (supplemental

notes). Using MRBIGR, we analyzed a maize multi-omics data-

set and delineated the causal role of the pericarp color-

regulating gene P1 in the flavonoid metabolic network. Addi-

tionally, we applied MRBIGR to a rice multi-omics dataset

(Gong et al., 2013) and demonstrated that certain

lysophosphatidyl cholines negatively influence MR effects on

1000-grain weight (Supplemental Figure 9; supplemental

notes), which supports findings that lysophosphatidyl cholines

may negatively affect grain weight by modulating starch

synthesis pathways (Liu et al., 2013). These findings highlight

the multi-species applicability and functional robustness of

MRBIGR, as well as the unique advantages of MR for causal

inference.
ALGORITHM AND MANUAL AVAILABILITY
For detailed insights into the algorithmic principles and functional imple-

mentation of MRBIGR, please refer to the supplemental algorithms.

Reproducible scripts for case studies and the user manual for MRBIGR

are available at https://gitee.com/crazyhsu/MRBIGR and https://mrbigr.

github.io/, respectively.
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